178 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			178 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include "verify.h"
 | |
| 
 | |
| /* copy A into B, using output stride of A and input stride of B */
 | |
| typedef struct {
 | |
|      dotens2_closure k;
 | |
|      R *ra; R *ia;
 | |
|      R *rb; R *ib;
 | |
|      int scalea, scaleb;
 | |
| } cpy_closure;
 | |
| 
 | |
| static void cpy0(dotens2_closure *k_, 
 | |
| 		 int indxa, int ondxa, int indxb, int ondxb)
 | |
| {
 | |
|      cpy_closure *k = (cpy_closure *)k_;
 | |
|      k->rb[indxb * k->scaleb] = k->ra[ondxa * k->scalea];
 | |
|      k->ib[indxb * k->scaleb] = k->ia[ondxa * k->scalea];
 | |
|      UNUSED(indxa); UNUSED(ondxb);
 | |
| }
 | |
| 
 | |
| static void cpy(R *ra, R *ia, const bench_tensor *sza, int scalea,
 | |
| 		R *rb, R *ib, const bench_tensor *szb, int scaleb)
 | |
| {
 | |
|      cpy_closure k;
 | |
|      k.k.apply = cpy0;
 | |
|      k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib;
 | |
|      k.scalea = scalea; k.scaleb = scaleb;
 | |
|      bench_dotens2(sza, szb, &k.k);
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|      dofft_closure k;
 | |
|      bench_problem *p;
 | |
| } dofft_dft_closure;
 | |
| 
 | |
| static void dft_apply(dofft_closure *k_, bench_complex *in, bench_complex *out)
 | |
| {
 | |
|      dofft_dft_closure *k = (dofft_dft_closure *)k_;
 | |
|      bench_problem *p = k->p;
 | |
|      bench_tensor *totalsz, *pckdsz;
 | |
|      bench_tensor *totalsz_swap, *pckdsz_swap;
 | |
|      bench_real *ri, *ii, *ro, *io;
 | |
|      int totalscale;
 | |
| 
 | |
|      totalsz = tensor_append(p->vecsz, p->sz);
 | |
|      pckdsz = verify_pack(totalsz, 2);
 | |
|      ri = (bench_real *) p->in;
 | |
|      ro = (bench_real *) p->out;
 | |
| 
 | |
|      totalsz_swap = tensor_copy_swapio(totalsz);
 | |
|      pckdsz_swap = tensor_copy_swapio(pckdsz);
 | |
| 
 | |
|      /* confusion: the stride is the distance between complex elements
 | |
| 	when using interleaved format, but it is the distance between
 | |
| 	real elements when using split format */
 | |
|      if (p->split) {
 | |
| 	  ii = p->ini ? (bench_real *) p->ini : ri + p->iphyssz;
 | |
| 	  io = p->outi ? (bench_real *) p->outi : ro + p->ophyssz;
 | |
| 	  totalscale = 1;
 | |
|      } else {
 | |
| 	  ii = p->ini ? (bench_real *) p->ini : ri + 1;
 | |
| 	  io = p->outi ? (bench_real *) p->outi : ro + 1;
 | |
| 	  totalscale = 2;
 | |
|      }
 | |
| 
 | |
|      cpy(&c_re(in[0]), &c_im(in[0]), pckdsz, 1,
 | |
| 	    ri, ii, totalsz, totalscale);
 | |
|      after_problem_ccopy_from(p, ri, ii);
 | |
|      doit(1, p);
 | |
|      after_problem_ccopy_to(p, ro, io);
 | |
|      if (k->k.recopy_input)
 | |
| 	  cpy(ri, ii, totalsz_swap, totalscale,
 | |
| 	      &c_re(in[0]), &c_im(in[0]), pckdsz_swap, 1);
 | |
|      cpy(ro, io, totalsz, totalscale,
 | |
| 	 &c_re(out[0]), &c_im(out[0]), pckdsz, 1);
 | |
| 
 | |
|      tensor_destroy(totalsz);
 | |
|      tensor_destroy(pckdsz);
 | |
|      tensor_destroy(totalsz_swap);
 | |
|      tensor_destroy(pckdsz_swap);
 | |
| }
 | |
| 
 | |
| void verify_dft(bench_problem *p, int rounds, double tol, errors *e)
 | |
| {
 | |
|      C *inA, *inB, *inC, *outA, *outB, *outC, *tmp;
 | |
|      int n, vecn, N;
 | |
|      dofft_dft_closure k;
 | |
| 
 | |
|      BENCH_ASSERT(p->kind == PROBLEM_COMPLEX);
 | |
| 
 | |
|      k.k.apply = dft_apply;
 | |
|      k.k.recopy_input = 0;
 | |
|      k.p = p;
 | |
| 
 | |
|      if (rounds == 0)
 | |
| 	  rounds = 20;  /* default value */
 | |
| 
 | |
|      n = tensor_sz(p->sz);
 | |
|      vecn = tensor_sz(p->vecsz);
 | |
|      N = n * vecn;
 | |
| 
 | |
|      inA = (C *) bench_malloc(N * sizeof(C));
 | |
|      inB = (C *) bench_malloc(N * sizeof(C));
 | |
|      inC = (C *) bench_malloc(N * sizeof(C));
 | |
|      outA = (C *) bench_malloc(N * sizeof(C));
 | |
|      outB = (C *) bench_malloc(N * sizeof(C));
 | |
|      outC = (C *) bench_malloc(N * sizeof(C));
 | |
|      tmp = (C *) bench_malloc(N * sizeof(C));
 | |
| 
 | |
|      e->i = impulse(&k.k, n, vecn, inA, inB, inC, outA, outB, outC, 
 | |
| 		    tmp, rounds, tol);
 | |
|      e->l = linear(&k.k, 0, N, inA, inB, inC, outA, outB, outC,
 | |
| 		   tmp, rounds, tol);
 | |
| 
 | |
|      e->s = 0.0;
 | |
|      e->s = dmax(e->s, tf_shift(&k.k, 0, p->sz, n, vecn, p->sign,
 | |
| 				inA, inB, outA, outB, 
 | |
| 				tmp, rounds, tol, TIME_SHIFT));
 | |
|      e->s = dmax(e->s, tf_shift(&k.k, 0, p->sz, n, vecn, p->sign,
 | |
| 				inA, inB, outA, outB, 
 | |
| 				tmp, rounds, tol, FREQ_SHIFT));
 | |
| 
 | |
|      if (!p->in_place && !p->destroy_input)
 | |
| 	  preserves_input(&k.k, 0, N, inA, inB, outB, rounds);
 | |
| 
 | |
|      bench_free(tmp);
 | |
|      bench_free(outC);
 | |
|      bench_free(outB);
 | |
|      bench_free(outA);
 | |
|      bench_free(inC);
 | |
|      bench_free(inB);
 | |
|      bench_free(inA);
 | |
| }
 | |
| 
 | |
| 
 | |
| void accuracy_dft(bench_problem *p, int rounds, int impulse_rounds,
 | |
| 		  double t[6])
 | |
| {
 | |
|      dofft_dft_closure k;
 | |
|      int n;
 | |
|      C *a, *b;
 | |
| 
 | |
|      BENCH_ASSERT(p->kind == PROBLEM_COMPLEX);
 | |
|      BENCH_ASSERT(p->sz->rnk == 1);
 | |
|      BENCH_ASSERT(p->vecsz->rnk == 0);
 | |
| 
 | |
|      k.k.apply = dft_apply;
 | |
|      k.k.recopy_input = 0;
 | |
|      k.p = p;
 | |
|      n = tensor_sz(p->sz);
 | |
| 
 | |
|      a = (C *) bench_malloc(n * sizeof(C));
 | |
|      b = (C *) bench_malloc(n * sizeof(C));
 | |
|      accuracy_test(&k.k, 0, p->sign, n, a, b, rounds, impulse_rounds, t);
 | |
|      bench_free(b);
 | |
|      bench_free(a);
 | |
| }
 | 
