178 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			178 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Copyright (c) 2003, 2007-14 Matteo Frigo | ||
|  |  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology | ||
|  |  * | ||
|  |  * This program is free software; you can redistribute it and/or modify | ||
|  |  * it under the terms of the GNU General Public License as published by | ||
|  |  * the Free Software Foundation; either version 2 of the License, or | ||
|  |  * (at your option) any later version. | ||
|  |  * | ||
|  |  * This program is distributed in the hope that it will be useful, | ||
|  |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
|  |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
|  |  * GNU General Public License for more details. | ||
|  |  * | ||
|  |  * You should have received a copy of the GNU General Public License | ||
|  |  * along with this program; if not, write to the Free Software | ||
|  |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||
|  |  * | ||
|  |  */ | ||
|  | 
 | ||
|  | 
 | ||
|  | #include "verify.h"
 | ||
|  | 
 | ||
|  | /* copy A into B, using output stride of A and input stride of B */ | ||
|  | typedef struct { | ||
|  |      dotens2_closure k; | ||
|  |      R *ra; R *ia; | ||
|  |      R *rb; R *ib; | ||
|  |      int scalea, scaleb; | ||
|  | } cpy_closure; | ||
|  | 
 | ||
|  | static void cpy0(dotens2_closure *k_,  | ||
|  | 		 int indxa, int ondxa, int indxb, int ondxb) | ||
|  | { | ||
|  |      cpy_closure *k = (cpy_closure *)k_; | ||
|  |      k->rb[indxb * k->scaleb] = k->ra[ondxa * k->scalea]; | ||
|  |      k->ib[indxb * k->scaleb] = k->ia[ondxa * k->scalea]; | ||
|  |      UNUSED(indxa); UNUSED(ondxb); | ||
|  | } | ||
|  | 
 | ||
|  | static void cpy(R *ra, R *ia, const bench_tensor *sza, int scalea, | ||
|  | 		R *rb, R *ib, const bench_tensor *szb, int scaleb) | ||
|  | { | ||
|  |      cpy_closure k; | ||
|  |      k.k.apply = cpy0; | ||
|  |      k.ra = ra; k.ia = ia; k.rb = rb; k.ib = ib; | ||
|  |      k.scalea = scalea; k.scaleb = scaleb; | ||
|  |      bench_dotens2(sza, szb, &k.k); | ||
|  | } | ||
|  | 
 | ||
|  | typedef struct { | ||
|  |      dofft_closure k; | ||
|  |      bench_problem *p; | ||
|  | } dofft_dft_closure; | ||
|  | 
 | ||
|  | static void dft_apply(dofft_closure *k_, bench_complex *in, bench_complex *out) | ||
|  | { | ||
|  |      dofft_dft_closure *k = (dofft_dft_closure *)k_; | ||
|  |      bench_problem *p = k->p; | ||
|  |      bench_tensor *totalsz, *pckdsz; | ||
|  |      bench_tensor *totalsz_swap, *pckdsz_swap; | ||
|  |      bench_real *ri, *ii, *ro, *io; | ||
|  |      int totalscale; | ||
|  | 
 | ||
|  |      totalsz = tensor_append(p->vecsz, p->sz); | ||
|  |      pckdsz = verify_pack(totalsz, 2); | ||
|  |      ri = (bench_real *) p->in; | ||
|  |      ro = (bench_real *) p->out; | ||
|  | 
 | ||
|  |      totalsz_swap = tensor_copy_swapio(totalsz); | ||
|  |      pckdsz_swap = tensor_copy_swapio(pckdsz); | ||
|  | 
 | ||
|  |      /* confusion: the stride is the distance between complex elements
 | ||
|  | 	when using interleaved format, but it is the distance between | ||
|  | 	real elements when using split format */ | ||
|  |      if (p->split) { | ||
|  | 	  ii = p->ini ? (bench_real *) p->ini : ri + p->iphyssz; | ||
|  | 	  io = p->outi ? (bench_real *) p->outi : ro + p->ophyssz; | ||
|  | 	  totalscale = 1; | ||
|  |      } else { | ||
|  | 	  ii = p->ini ? (bench_real *) p->ini : ri + 1; | ||
|  | 	  io = p->outi ? (bench_real *) p->outi : ro + 1; | ||
|  | 	  totalscale = 2; | ||
|  |      } | ||
|  | 
 | ||
|  |      cpy(&c_re(in[0]), &c_im(in[0]), pckdsz, 1, | ||
|  | 	    ri, ii, totalsz, totalscale); | ||
|  |      after_problem_ccopy_from(p, ri, ii); | ||
|  |      doit(1, p); | ||
|  |      after_problem_ccopy_to(p, ro, io); | ||
|  |      if (k->k.recopy_input) | ||
|  | 	  cpy(ri, ii, totalsz_swap, totalscale, | ||
|  | 	      &c_re(in[0]), &c_im(in[0]), pckdsz_swap, 1); | ||
|  |      cpy(ro, io, totalsz, totalscale, | ||
|  | 	 &c_re(out[0]), &c_im(out[0]), pckdsz, 1); | ||
|  | 
 | ||
|  |      tensor_destroy(totalsz); | ||
|  |      tensor_destroy(pckdsz); | ||
|  |      tensor_destroy(totalsz_swap); | ||
|  |      tensor_destroy(pckdsz_swap); | ||
|  | } | ||
|  | 
 | ||
|  | void verify_dft(bench_problem *p, int rounds, double tol, errors *e) | ||
|  | { | ||
|  |      C *inA, *inB, *inC, *outA, *outB, *outC, *tmp; | ||
|  |      int n, vecn, N; | ||
|  |      dofft_dft_closure k; | ||
|  | 
 | ||
|  |      BENCH_ASSERT(p->kind == PROBLEM_COMPLEX); | ||
|  | 
 | ||
|  |      k.k.apply = dft_apply; | ||
|  |      k.k.recopy_input = 0; | ||
|  |      k.p = p; | ||
|  | 
 | ||
|  |      if (rounds == 0) | ||
|  | 	  rounds = 20;  /* default value */ | ||
|  | 
 | ||
|  |      n = tensor_sz(p->sz); | ||
|  |      vecn = tensor_sz(p->vecsz); | ||
|  |      N = n * vecn; | ||
|  | 
 | ||
|  |      inA = (C *) bench_malloc(N * sizeof(C)); | ||
|  |      inB = (C *) bench_malloc(N * sizeof(C)); | ||
|  |      inC = (C *) bench_malloc(N * sizeof(C)); | ||
|  |      outA = (C *) bench_malloc(N * sizeof(C)); | ||
|  |      outB = (C *) bench_malloc(N * sizeof(C)); | ||
|  |      outC = (C *) bench_malloc(N * sizeof(C)); | ||
|  |      tmp = (C *) bench_malloc(N * sizeof(C)); | ||
|  | 
 | ||
|  |      e->i = impulse(&k.k, n, vecn, inA, inB, inC, outA, outB, outC,  | ||
|  | 		    tmp, rounds, tol); | ||
|  |      e->l = linear(&k.k, 0, N, inA, inB, inC, outA, outB, outC, | ||
|  | 		   tmp, rounds, tol); | ||
|  | 
 | ||
|  |      e->s = 0.0; | ||
|  |      e->s = dmax(e->s, tf_shift(&k.k, 0, p->sz, n, vecn, p->sign, | ||
|  | 				inA, inB, outA, outB,  | ||
|  | 				tmp, rounds, tol, TIME_SHIFT)); | ||
|  |      e->s = dmax(e->s, tf_shift(&k.k, 0, p->sz, n, vecn, p->sign, | ||
|  | 				inA, inB, outA, outB,  | ||
|  | 				tmp, rounds, tol, FREQ_SHIFT)); | ||
|  | 
 | ||
|  |      if (!p->in_place && !p->destroy_input) | ||
|  | 	  preserves_input(&k.k, 0, N, inA, inB, outB, rounds); | ||
|  | 
 | ||
|  |      bench_free(tmp); | ||
|  |      bench_free(outC); | ||
|  |      bench_free(outB); | ||
|  |      bench_free(outA); | ||
|  |      bench_free(inC); | ||
|  |      bench_free(inB); | ||
|  |      bench_free(inA); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | void accuracy_dft(bench_problem *p, int rounds, int impulse_rounds, | ||
|  | 		  double t[6]) | ||
|  | { | ||
|  |      dofft_dft_closure k; | ||
|  |      int n; | ||
|  |      C *a, *b; | ||
|  | 
 | ||
|  |      BENCH_ASSERT(p->kind == PROBLEM_COMPLEX); | ||
|  |      BENCH_ASSERT(p->sz->rnk == 1); | ||
|  |      BENCH_ASSERT(p->vecsz->rnk == 0); | ||
|  | 
 | ||
|  |      k.k.apply = dft_apply; | ||
|  |      k.k.recopy_input = 0; | ||
|  |      k.p = p; | ||
|  |      n = tensor_sz(p->sz); | ||
|  | 
 | ||
|  |      a = (C *) bench_malloc(n * sizeof(C)); | ||
|  |      b = (C *) bench_malloc(n * sizeof(C)); | ||
|  |      accuracy_test(&k.k, 0, p->sign, n, a, b, rounds, impulse_rounds, t); | ||
|  |      bench_free(b); | ||
|  |      bench_free(a); | ||
|  | } |