336 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			336 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * Double-precision support added by Romain Dolbeau.
 | |
|  * Romain Dolbeau hereby places his modifications in the public domain.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #if !defined(FFTW_SINGLE) && !defined( __aarch64__)
 | |
| #error "NEON only works in single precision on 32 bits ARM"
 | |
| #endif
 | |
| #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
 | |
| #error "NEON only works in single or double precision"
 | |
| #endif
 | |
| 
 | |
| #ifdef FFTW_SINGLE
 | |
| #  define DS(d,s) s /* single-precision option */
 | |
| #  define SUFF(name) name ## _f32
 | |
| #else
 | |
| #  define DS(d,s) d /* double-precision option */
 | |
| #  define SUFF(name) name ## _f64
 | |
| #endif
 | |
| 
 | |
| /* define these unconditionally, because they are used by
 | |
|    taint.c which is compiled without neon */
 | |
| #define SIMD_SUFFIX _neon	/* for renaming */
 | |
| #define VL DS(1,2)            /* SIMD complex vector length */
 | |
| #define SIMD_VSTRIDE_OKA(x) DS(SIMD_STRIDE_OKA(x),((x) == 2))
 | |
| #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
 | |
| 
 | |
| #if defined(__GNUC__) && !defined(__ARM_NEON__) && !defined(__ARM_NEON)
 | |
| #error "compiling simd-neon.h requires -mfpu=neon or equivalent"
 | |
| #endif
 | |
| 
 | |
| #include <arm_neon.h>
 | |
| 
 | |
| /* FIXME: I am not sure whether this code assumes little-endian
 | |
|    ordering.  VLIT may or may not be wrong for big-endian systems. */
 | |
| typedef DS(float64x2_t, float32x4_t) V;
 | |
| 
 | |
| #ifdef FFTW_SINGLE
 | |
| #  define VLIT(x0, x1) {x0, x1, x0, x1}
 | |
| #else
 | |
| #  define VLIT(x0, x1) {x0, x1}
 | |
| #endif
 | |
| #define LDK(x) x
 | |
| #define DVK(var, val) const V var = VLIT(val, val)
 | |
| 
 | |
| /* NEON has FMA, but a three-operand FMA is not too useful
 | |
|    for FFT purposes.  We normally compute
 | |
| 
 | |
|       t0=a+b*c
 | |
|       t1=a-b*c
 | |
| 
 | |
|    In a three-operand instruction set this translates into
 | |
| 
 | |
|       t0=a
 | |
|       t0+=b*c
 | |
|       t1=a
 | |
|       t1-=b*c
 | |
| 
 | |
|    At least one move must be implemented, negating the advantage of
 | |
|    the FMA in the first place.  At least some versions of gcc generate
 | |
|    both moves.  So we are better off generating t=b*c;t0=a+t;t1=a-t;*/
 | |
| #if ARCH_PREFERS_FMA
 | |
| #warning "--enable-fma on NEON is probably a bad idea (see source code)"
 | |
| #endif
 | |
| 
 | |
| #define VADD(a, b) SUFF(vaddq)(a, b)
 | |
| #define VSUB(a, b) SUFF(vsubq)(a, b)
 | |
| #define VMUL(a, b) SUFF(vmulq)(a, b)
 | |
| #define VFMA(a, b, c) SUFF(vmlaq)(c, a, b)	        /* a*b+c */
 | |
| #define VFNMS(a, b, c) SUFF(vmlsq)(c, a, b)	/* FNMS=-(a*b-c) in powerpc terminology; MLS=c-a*b
 | |
| 						   in ARM terminology */
 | |
| #define VFMS(a, b, c) VSUB(VMUL(a, b), c)	/* FMS=a*b-c in powerpc terminology; no equivalent
 | |
| 						   arm instruction (?) */
 | |
| 
 | |
| #define STOREH(a, v) SUFF(vst1)((a), SUFF(vget_high)(v))
 | |
| #define STOREL(a, v) SUFF(vst1)((a), SUFF(vget_low)(v))
 | |
| 
 | |
| static inline V LDA(const R *x, INT ivs, const R *aligned_like)
 | |
| {
 | |
|      (void) aligned_like;	/* UNUSED */
 | |
|      return SUFF(vld1q)(x);
 | |
| }
 | |
| static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
 | |
| {
 | |
|      (void) aligned_like;	/* UNUSED */
 | |
|      SUFF(vst1q)(x, v);
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef FFTW_SINGLE
 | |
| static inline V LD(const R *x, INT ivs, const R *aligned_like)
 | |
| {
 | |
|      (void) aligned_like;	/* UNUSED */
 | |
|      return SUFF(vcombine)(SUFF(vld1)(x), SUFF(vld1)((x + ivs)));
 | |
| }
 | |
| static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
 | |
| {
 | |
|      (void) aligned_like;	/* UNUSED */
 | |
|      /* WARNING: the extra_iter hack depends upon store-low occurring
 | |
| 	after store-high */
 | |
|      STOREH(x + ovs, v);
 | |
|      STOREL(x,v);
 | |
| }
 | |
| #else /* !FFTW_SINGLE */
 | |
| #  define LD LDA
 | |
| #  define ST STA
 | |
| #endif
 | |
| 
 | |
| /* 2x2 complex transpose and store */
 | |
| #define STM2 DS(STA,ST)
 | |
| #define STN2(x, v0, v1, ovs) /* nop */
 | |
| 
 | |
| #ifdef FFTW_SINGLE
 | |
| /* store and 4x4 real transpose */
 | |
| static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
 | |
| {
 | |
|      (void) aligned_like;	/* UNUSED */
 | |
|      SUFF(vst1_lane)((x)      , SUFF(vget_low)(v), 0);
 | |
|      SUFF(vst1_lane)((x + ovs), SUFF(vget_low)(v), 1);
 | |
|      SUFF(vst1_lane)((x + 2 * ovs), SUFF(vget_high)(v), 0);
 | |
|      SUFF(vst1_lane)((x + 3 * ovs), SUFF(vget_high)(v), 1);
 | |
| }
 | |
| #define STN4(x, v0, v1, v2, v3, ovs)	/* use STM4 */
 | |
| #else /* !FFTW_SINGLE */
 | |
| static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
 | |
| {
 | |
|      (void)aligned_like; /* UNUSED */
 | |
|      STOREL(x, v);
 | |
|      STOREH(x + ovs, v);
 | |
| }
 | |
| #  define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
 | |
| #endif
 | |
| 
 | |
| #ifdef FFTW_SINGLE
 | |
| #define FLIP_RI(x) SUFF(vrev64q)(x)
 | |
| #else
 | |
| /* FIXME */
 | |
| #define FLIP_RI(x) SUFF(vcombine)(SUFF(vget_high)(x), SUFF(vget_low)(x))
 | |
| #endif
 | |
| 
 | |
| static inline V VCONJ(V x)
 | |
| {
 | |
| #ifdef FFTW_SINGLE
 | |
|      static const uint32x4_t pm = {0, 0x80000000u, 0, 0x80000000u};
 | |
|      return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(x), pm));
 | |
| #else
 | |
|     static const uint64x2_t pm = {0, 0x8000000000000000ull};
 | |
|     /* Gcc-4.9.2 still does not include vreinterpretq_f64_u64, but simple
 | |
|      * casts generate the correct assembly.
 | |
|      */
 | |
|     return (float64x2_t)(veorq_u64((uint64x2_t)(x), (uint64x2_t)(pm)));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline V VBYI(V x)
 | |
| {
 | |
|      return FLIP_RI(VCONJ(x));
 | |
| }
 | |
| 
 | |
| static inline V VFMAI(V b, V c)
 | |
| {
 | |
|      const V mp = VLIT(-1.0, 1.0);
 | |
|      return VFMA(FLIP_RI(b), mp, c);
 | |
| }
 | |
| 
 | |
| static inline V VFNMSI(V b, V c)
 | |
| {
 | |
|      const V mp = VLIT(-1.0, 1.0);
 | |
|      return VFNMS(FLIP_RI(b), mp, c);
 | |
| }
 | |
| 
 | |
| static inline V VFMACONJ(V b, V c)
 | |
| {
 | |
|      const V pm = VLIT(1.0, -1.0);
 | |
|      return VFMA(b, pm, c);
 | |
| }
 | |
| 
 | |
| static inline V VFNMSCONJ(V b, V c)
 | |
| {
 | |
|      const V pm = VLIT(1.0, -1.0);
 | |
|      return VFNMS(b, pm, c);
 | |
| }
 | |
| 
 | |
| static inline V VFMSCONJ(V b, V c)
 | |
| {
 | |
|      return VSUB(VCONJ(b), c);
 | |
| }
 | |
| 
 | |
| #ifdef FFTW_SINGLE
 | |
| #if 1
 | |
| #define VEXTRACT_REIM(tr, ti, tx)                               \
 | |
| {                                                               \
 | |
|      tr = SUFF(vcombine)(SUFF(vdup_lane)(SUFF(vget_low)(tx), 0),      \
 | |
|                        SUFF(vdup_lane)(SUFF(vget_high)(tx), 0));    \
 | |
|      ti = SUFF(vcombine)(SUFF(vdup_lane)(SUFF(vget_low)(tx), 1),      \
 | |
|                        SUFF(vdup_lane)(SUFF(vget_high)(tx), 1));    \
 | |
| }
 | |
| #else
 | |
| /* this alternative might be faster in an ideal world, but gcc likes
 | |
|    to spill VVV onto the stack */
 | |
| #define VEXTRACT_REIM(tr, ti, tx)               \
 | |
| {                                               \
 | |
|      float32x4x2_t vvv = SUFF(vtrnq)(tx, tx);     \
 | |
|      tr = vvv.val[0];                           \
 | |
|      ti = vvv.val[1];                           \
 | |
| }
 | |
| #endif
 | |
| #else
 | |
| #define VEXTRACT_REIM(tr, ti, tx)                               \
 | |
| {                                                               \
 | |
|   tr = SUFF(vtrn1q)(tx, tx);                                    \
 | |
|   ti = SUFF(vtrn2q)(tx, tx);                                    \
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline V VZMUL(V tx, V sr)
 | |
| {
 | |
|      V tr, ti;
 | |
|      VEXTRACT_REIM(tr, ti, tx);
 | |
|      tr = VMUL(sr, tr);
 | |
|      sr = VBYI(sr);
 | |
|      return VFMA(ti, sr, tr);
 | |
| }
 | |
| 
 | |
| static inline V VZMULJ(V tx, V sr)
 | |
| {
 | |
|      V tr, ti;
 | |
|      VEXTRACT_REIM(tr, ti, tx);
 | |
|      tr = VMUL(sr, tr);
 | |
|      sr = VBYI(sr);
 | |
|      return VFNMS(ti, sr, tr);
 | |
| }
 | |
| 
 | |
| static inline V VZMULI(V tx, V sr)
 | |
| {
 | |
|      V tr, ti;
 | |
|      VEXTRACT_REIM(tr, ti, tx);
 | |
|      ti = VMUL(ti, sr);
 | |
|      sr = VBYI(sr);
 | |
|      return VFMS(tr, sr, ti);
 | |
| }
 | |
| 
 | |
| static inline V VZMULIJ(V tx, V sr)
 | |
| {
 | |
|      V tr, ti;
 | |
|      VEXTRACT_REIM(tr, ti, tx);
 | |
|      ti = VMUL(ti, sr);
 | |
|      sr = VBYI(sr);
 | |
|      return VFMA(tr, sr, ti);
 | |
| }
 | |
| 
 | |
| /* twiddle storage #1: compact, slower */
 | |
| #ifdef FFTW_SINGLE
 | |
| #define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
 | |
| #else
 | |
| #define VTW1(v,x) {TW_CEXP, v, x}
 | |
| #endif
 | |
| #define TWVL1 VL
 | |
| static inline V BYTW1(const R *t, V sr)
 | |
| {
 | |
|      V tx = LDA(t, 2, 0);
 | |
|      return VZMUL(tx, sr);
 | |
| }
 | |
| 
 | |
| static inline V BYTWJ1(const R *t, V sr)
 | |
| {
 | |
|      V tx = LDA(t, 2, 0);
 | |
|      return VZMULJ(tx, sr);
 | |
| }
 | |
| 
 | |
| /* twiddle storage #2: twice the space, faster (when in cache) */
 | |
| #ifdef FFTW_SINGLE
 | |
| #  define VTW2(v,x)							\
 | |
|   {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x},	\
 | |
|   {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
 | |
| #else
 | |
| #  define VTW2(v,x)							\
 | |
|   {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
 | |
| #endif
 | |
| #define TWVL2 (2 * VL)
 | |
| 
 | |
| static inline V BYTW2(const R *t, V sr)
 | |
| {
 | |
|      V si = FLIP_RI(sr);
 | |
|      V tr = LDA(t, 2, 0), ti = LDA(t+2*VL, 2, 0);
 | |
|      return VFMA(ti, si, VMUL(tr, sr));
 | |
| }
 | |
| 
 | |
| static inline V BYTWJ2(const R *t, V sr)
 | |
| {
 | |
|      V si = FLIP_RI(sr);
 | |
|      V tr = LDA(t, 2, 0), ti = LDA(t+2*VL, 2, 0);
 | |
|      return VFNMS(ti, si, VMUL(tr, sr));
 | |
| }
 | |
| 
 | |
| /* twiddle storage #3 */
 | |
| #ifdef FFTW_SINGLE
 | |
| #  define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
 | |
| #else
 | |
| #  define VTW3(v,x) {TW_CEXP, v, x}
 | |
| #endif
 | |
| #  define TWVL3 (VL)
 | |
| 
 | |
| /* twiddle storage for split arrays */
 | |
| #ifdef FFTW_SINGLE
 | |
| #  define VTWS(v,x)							  \
 | |
|     {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
 | |
|     {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
 | |
| #else
 | |
| #  define VTWS(v,x)							  \
 | |
|     {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
 | |
| #endif
 | |
| #define TWVLS (2 * VL)
 | |
| 
 | |
| #define VLEAVE()		/* nothing */
 | |
| 
 | |
| #include "simd-common.h"
 | 
