233 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			233 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 | 
						|
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
/* This file was automatically generated --- DO NOT EDIT */
 | 
						|
/* Generated on Tue Sep 14 10:45:45 EDT 2021 */
 | 
						|
 | 
						|
#include "dft/codelet-dft.h"
 | 
						|
 | 
						|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | 
						|
 | 
						|
/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3fv_8 -include dft/simd/t3f.h */
 | 
						|
 | 
						|
/*
 | 
						|
 * This function contains 37 FP additions, 32 FP multiplications,
 | 
						|
 * (or, 27 additions, 22 multiplications, 10 fused multiply/add),
 | 
						|
 * 31 stack variables, 1 constants, and 16 memory accesses
 | 
						|
 */
 | 
						|
#include "dft/simd/t3f.h"
 | 
						|
 | 
						|
static void t3fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
 | 
						|
{
 | 
						|
     DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
 | 
						|
     {
 | 
						|
	  INT m;
 | 
						|
	  R *x;
 | 
						|
	  x = ri;
 | 
						|
	  for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
 | 
						|
	       V T2, T3, Ta, T4, Tb, Tc, Tp;
 | 
						|
	       T2 = LDW(&(W[0]));
 | 
						|
	       T3 = LDW(&(W[TWVL * 2]));
 | 
						|
	       Ta = VZMULJ(T2, T3);
 | 
						|
	       T4 = VZMUL(T2, T3);
 | 
						|
	       Tb = LDW(&(W[TWVL * 4]));
 | 
						|
	       Tc = VZMULJ(Ta, Tb);
 | 
						|
	       Tp = VZMULJ(T2, Tb);
 | 
						|
	       {
 | 
						|
		    V T7, Tx, Ts, Ty, Tf, TA, Tk, TB, T1, T6, T5;
 | 
						|
		    T1 = LD(&(x[0]), ms, &(x[0]));
 | 
						|
		    T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
 | 
						|
		    T6 = VZMULJ(T4, T5);
 | 
						|
		    T7 = VSUB(T1, T6);
 | 
						|
		    Tx = VADD(T1, T6);
 | 
						|
		    {
 | 
						|
			 V To, Tr, Tn, Tq;
 | 
						|
			 Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
 | 
						|
			 To = VZMULJ(Ta, Tn);
 | 
						|
			 Tq = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
 | 
						|
			 Tr = VZMULJ(Tp, Tq);
 | 
						|
			 Ts = VSUB(To, Tr);
 | 
						|
			 Ty = VADD(To, Tr);
 | 
						|
		    }
 | 
						|
		    {
 | 
						|
			 V T9, Te, T8, Td;
 | 
						|
			 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
 | 
						|
			 T9 = VZMULJ(T2, T8);
 | 
						|
			 Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
 | 
						|
			 Te = VZMULJ(Tc, Td);
 | 
						|
			 Tf = VSUB(T9, Te);
 | 
						|
			 TA = VADD(T9, Te);
 | 
						|
		    }
 | 
						|
		    {
 | 
						|
			 V Th, Tj, Tg, Ti;
 | 
						|
			 Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
 | 
						|
			 Th = VZMULJ(Tb, Tg);
 | 
						|
			 Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
 | 
						|
			 Tj = VZMULJ(T3, Ti);
 | 
						|
			 Tk = VSUB(Th, Tj);
 | 
						|
			 TB = VADD(Th, Tj);
 | 
						|
		    }
 | 
						|
		    {
 | 
						|
			 V Tz, TC, TD, TE;
 | 
						|
			 Tz = VADD(Tx, Ty);
 | 
						|
			 TC = VADD(TA, TB);
 | 
						|
			 ST(&(x[WS(rs, 4)]), VSUB(Tz, TC), ms, &(x[0]));
 | 
						|
			 ST(&(x[0]), VADD(Tz, TC), ms, &(x[0]));
 | 
						|
			 TD = VSUB(Tx, Ty);
 | 
						|
			 TE = VSUB(TB, TA);
 | 
						|
			 ST(&(x[WS(rs, 6)]), VFNMSI(TE, TD), ms, &(x[0]));
 | 
						|
			 ST(&(x[WS(rs, 2)]), VFMAI(TE, TD), ms, &(x[0]));
 | 
						|
			 {
 | 
						|
			      V Tm, Tv, Tu, Tw, Tl, Tt;
 | 
						|
			      Tl = VADD(Tf, Tk);
 | 
						|
			      Tm = VFMA(LDK(KP707106781), Tl, T7);
 | 
						|
			      Tv = VFNMS(LDK(KP707106781), Tl, T7);
 | 
						|
			      Tt = VSUB(Tk, Tf);
 | 
						|
			      Tu = VFNMS(LDK(KP707106781), Tt, Ts);
 | 
						|
			      Tw = VFMA(LDK(KP707106781), Tt, Ts);
 | 
						|
			      ST(&(x[WS(rs, 1)]), VFNMSI(Tu, Tm), ms, &(x[WS(rs, 1)]));
 | 
						|
			      ST(&(x[WS(rs, 3)]), VFMAI(Tw, Tv), ms, &(x[WS(rs, 1)]));
 | 
						|
			      ST(&(x[WS(rs, 7)]), VFMAI(Tu, Tm), ms, &(x[WS(rs, 1)]));
 | 
						|
			      ST(&(x[WS(rs, 5)]), VFNMSI(Tw, Tv), ms, &(x[WS(rs, 1)]));
 | 
						|
			 }
 | 
						|
		    }
 | 
						|
	       }
 | 
						|
	  }
 | 
						|
     }
 | 
						|
     VLEAVE();
 | 
						|
}
 | 
						|
 | 
						|
static const tw_instr twinstr[] = {
 | 
						|
     VTW(0, 1),
 | 
						|
     VTW(0, 3),
 | 
						|
     VTW(0, 7),
 | 
						|
     { TW_NEXT, VL, 0 }
 | 
						|
};
 | 
						|
 | 
						|
static const ct_desc desc = { 8, XSIMD_STRING("t3fv_8"), twinstr, &GENUS, { 27, 22, 10, 0 }, 0, 0, 0 };
 | 
						|
 | 
						|
void XSIMD(codelet_t3fv_8) (planner *p) {
 | 
						|
     X(kdft_dit_register) (p, t3fv_8, &desc);
 | 
						|
}
 | 
						|
#else
 | 
						|
 | 
						|
/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3fv_8 -include dft/simd/t3f.h */
 | 
						|
 | 
						|
/*
 | 
						|
 * This function contains 37 FP additions, 24 FP multiplications,
 | 
						|
 * (or, 37 additions, 24 multiplications, 0 fused multiply/add),
 | 
						|
 * 31 stack variables, 1 constants, and 16 memory accesses
 | 
						|
 */
 | 
						|
#include "dft/simd/t3f.h"
 | 
						|
 | 
						|
static void t3fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
 | 
						|
{
 | 
						|
     DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
 | 
						|
     {
 | 
						|
	  INT m;
 | 
						|
	  R *x;
 | 
						|
	  x = ri;
 | 
						|
	  for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
 | 
						|
	       V T2, T3, Ta, T4, Tb, Tc, Tq;
 | 
						|
	       T2 = LDW(&(W[0]));
 | 
						|
	       T3 = LDW(&(W[TWVL * 2]));
 | 
						|
	       Ta = VZMULJ(T2, T3);
 | 
						|
	       T4 = VZMUL(T2, T3);
 | 
						|
	       Tb = LDW(&(W[TWVL * 4]));
 | 
						|
	       Tc = VZMULJ(Ta, Tb);
 | 
						|
	       Tq = VZMULJ(T2, Tb);
 | 
						|
	       {
 | 
						|
		    V T7, Tx, Tt, Ty, Tf, TA, Tk, TB, T1, T6, T5;
 | 
						|
		    T1 = LD(&(x[0]), ms, &(x[0]));
 | 
						|
		    T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
 | 
						|
		    T6 = VZMULJ(T4, T5);
 | 
						|
		    T7 = VSUB(T1, T6);
 | 
						|
		    Tx = VADD(T1, T6);
 | 
						|
		    {
 | 
						|
			 V Tp, Ts, To, Tr;
 | 
						|
			 To = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
 | 
						|
			 Tp = VZMULJ(Ta, To);
 | 
						|
			 Tr = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
 | 
						|
			 Ts = VZMULJ(Tq, Tr);
 | 
						|
			 Tt = VSUB(Tp, Ts);
 | 
						|
			 Ty = VADD(Tp, Ts);
 | 
						|
		    }
 | 
						|
		    {
 | 
						|
			 V T9, Te, T8, Td;
 | 
						|
			 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
 | 
						|
			 T9 = VZMULJ(T2, T8);
 | 
						|
			 Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
 | 
						|
			 Te = VZMULJ(Tc, Td);
 | 
						|
			 Tf = VSUB(T9, Te);
 | 
						|
			 TA = VADD(T9, Te);
 | 
						|
		    }
 | 
						|
		    {
 | 
						|
			 V Th, Tj, Tg, Ti;
 | 
						|
			 Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
 | 
						|
			 Th = VZMULJ(Tb, Tg);
 | 
						|
			 Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
 | 
						|
			 Tj = VZMULJ(T3, Ti);
 | 
						|
			 Tk = VSUB(Th, Tj);
 | 
						|
			 TB = VADD(Th, Tj);
 | 
						|
		    }
 | 
						|
		    {
 | 
						|
			 V Tz, TC, TD, TE;
 | 
						|
			 Tz = VADD(Tx, Ty);
 | 
						|
			 TC = VADD(TA, TB);
 | 
						|
			 ST(&(x[WS(rs, 4)]), VSUB(Tz, TC), ms, &(x[0]));
 | 
						|
			 ST(&(x[0]), VADD(Tz, TC), ms, &(x[0]));
 | 
						|
			 TD = VSUB(Tx, Ty);
 | 
						|
			 TE = VBYI(VSUB(TB, TA));
 | 
						|
			 ST(&(x[WS(rs, 6)]), VSUB(TD, TE), ms, &(x[0]));
 | 
						|
			 ST(&(x[WS(rs, 2)]), VADD(TD, TE), ms, &(x[0]));
 | 
						|
			 {
 | 
						|
			      V Tm, Tv, Tu, Tw, Tl, Tn;
 | 
						|
			      Tl = VMUL(LDK(KP707106781), VADD(Tf, Tk));
 | 
						|
			      Tm = VADD(T7, Tl);
 | 
						|
			      Tv = VSUB(T7, Tl);
 | 
						|
			      Tn = VMUL(LDK(KP707106781), VSUB(Tk, Tf));
 | 
						|
			      Tu = VBYI(VSUB(Tn, Tt));
 | 
						|
			      Tw = VBYI(VADD(Tt, Tn));
 | 
						|
			      ST(&(x[WS(rs, 7)]), VSUB(Tm, Tu), ms, &(x[WS(rs, 1)]));
 | 
						|
			      ST(&(x[WS(rs, 3)]), VADD(Tv, Tw), ms, &(x[WS(rs, 1)]));
 | 
						|
			      ST(&(x[WS(rs, 1)]), VADD(Tm, Tu), ms, &(x[WS(rs, 1)]));
 | 
						|
			      ST(&(x[WS(rs, 5)]), VSUB(Tv, Tw), ms, &(x[WS(rs, 1)]));
 | 
						|
			 }
 | 
						|
		    }
 | 
						|
	       }
 | 
						|
	  }
 | 
						|
     }
 | 
						|
     VLEAVE();
 | 
						|
}
 | 
						|
 | 
						|
static const tw_instr twinstr[] = {
 | 
						|
     VTW(0, 1),
 | 
						|
     VTW(0, 3),
 | 
						|
     VTW(0, 7),
 | 
						|
     { TW_NEXT, VL, 0 }
 | 
						|
};
 | 
						|
 | 
						|
static const ct_desc desc = { 8, XSIMD_STRING("t3fv_8"), twinstr, &GENUS, { 37, 24, 0, 0 }, 0, 0, 0 };
 | 
						|
 | 
						|
void XSIMD(codelet_t3fv_8) (planner *p) {
 | 
						|
     X(kdft_dit_register) (p, t3fv_8, &desc);
 | 
						|
}
 | 
						|
#endif
 |