201 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			201 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 | 
						|
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
/* This file was automatically generated --- DO NOT EDIT */
 | 
						|
/* Generated on Tue Sep 14 10:44:32 EDT 2021 */
 | 
						|
 | 
						|
#include "dft/codelet-dft.h"
 | 
						|
 | 
						|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | 
						|
 | 
						|
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 4 -name t2_4 -include dft/scalar/t.h */
 | 
						|
 | 
						|
/*
 | 
						|
 * This function contains 24 FP additions, 16 FP multiplications,
 | 
						|
 * (or, 16 additions, 8 multiplications, 8 fused multiply/add),
 | 
						|
 * 21 stack variables, 0 constants, and 16 memory accesses
 | 
						|
 */
 | 
						|
#include "dft/scalar/t.h"
 | 
						|
 | 
						|
static void t2_4(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
 | 
						|
{
 | 
						|
     {
 | 
						|
	  INT m;
 | 
						|
	  for (m = mb, W = W + (mb * 4); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 4, MAKE_VOLATILE_STRIDE(8, rs)) {
 | 
						|
	       E T2, T6, T3, T5, T7, Tb, T4, Ta;
 | 
						|
	       T2 = W[0];
 | 
						|
	       T6 = W[3];
 | 
						|
	       T3 = W[2];
 | 
						|
	       T4 = T2 * T3;
 | 
						|
	       Ta = T2 * T6;
 | 
						|
	       T5 = W[1];
 | 
						|
	       T7 = FMA(T5, T6, T4);
 | 
						|
	       Tb = FNMS(T5, T3, Ta);
 | 
						|
	       {
 | 
						|
		    E T1, Tx, Td, Tw, Ti, Tq, Tm, Ts;
 | 
						|
		    T1 = ri[0];
 | 
						|
		    Tx = ii[0];
 | 
						|
		    {
 | 
						|
			 E T8, T9, Tc, Tv;
 | 
						|
			 T8 = ri[WS(rs, 2)];
 | 
						|
			 T9 = T7 * T8;
 | 
						|
			 Tc = ii[WS(rs, 2)];
 | 
						|
			 Tv = T7 * Tc;
 | 
						|
			 Td = FMA(Tb, Tc, T9);
 | 
						|
			 Tw = FNMS(Tb, T8, Tv);
 | 
						|
		    }
 | 
						|
		    {
 | 
						|
			 E Tf, Tg, Th, Tp;
 | 
						|
			 Tf = ri[WS(rs, 1)];
 | 
						|
			 Tg = T2 * Tf;
 | 
						|
			 Th = ii[WS(rs, 1)];
 | 
						|
			 Tp = T2 * Th;
 | 
						|
			 Ti = FMA(T5, Th, Tg);
 | 
						|
			 Tq = FNMS(T5, Tf, Tp);
 | 
						|
		    }
 | 
						|
		    {
 | 
						|
			 E Tj, Tk, Tl, Tr;
 | 
						|
			 Tj = ri[WS(rs, 3)];
 | 
						|
			 Tk = T3 * Tj;
 | 
						|
			 Tl = ii[WS(rs, 3)];
 | 
						|
			 Tr = T3 * Tl;
 | 
						|
			 Tm = FMA(T6, Tl, Tk);
 | 
						|
			 Ts = FNMS(T6, Tj, Tr);
 | 
						|
		    }
 | 
						|
		    {
 | 
						|
			 E Te, Tn, Tu, Ty;
 | 
						|
			 Te = T1 + Td;
 | 
						|
			 Tn = Ti + Tm;
 | 
						|
			 ri[WS(rs, 2)] = Te - Tn;
 | 
						|
			 ri[0] = Te + Tn;
 | 
						|
			 Tu = Tq + Ts;
 | 
						|
			 Ty = Tw + Tx;
 | 
						|
			 ii[0] = Tu + Ty;
 | 
						|
			 ii[WS(rs, 2)] = Ty - Tu;
 | 
						|
		    }
 | 
						|
		    {
 | 
						|
			 E To, Tt, Tz, TA;
 | 
						|
			 To = T1 - Td;
 | 
						|
			 Tt = Tq - Ts;
 | 
						|
			 ri[WS(rs, 3)] = To - Tt;
 | 
						|
			 ri[WS(rs, 1)] = To + Tt;
 | 
						|
			 Tz = Tx - Tw;
 | 
						|
			 TA = Ti - Tm;
 | 
						|
			 ii[WS(rs, 1)] = Tz - TA;
 | 
						|
			 ii[WS(rs, 3)] = TA + Tz;
 | 
						|
		    }
 | 
						|
	       }
 | 
						|
	  }
 | 
						|
     }
 | 
						|
}
 | 
						|
 | 
						|
static const tw_instr twinstr[] = {
 | 
						|
     { TW_CEXP, 0, 1 },
 | 
						|
     { TW_CEXP, 0, 3 },
 | 
						|
     { TW_NEXT, 1, 0 }
 | 
						|
};
 | 
						|
 | 
						|
static const ct_desc desc = { 4, "t2_4", twinstr, &GENUS, { 16, 8, 8, 0 }, 0, 0, 0 };
 | 
						|
 | 
						|
void X(codelet_t2_4) (planner *p) {
 | 
						|
     X(kdft_dit_register) (p, t2_4, &desc);
 | 
						|
}
 | 
						|
#else
 | 
						|
 | 
						|
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 4 -name t2_4 -include dft/scalar/t.h */
 | 
						|
 | 
						|
/*
 | 
						|
 * This function contains 24 FP additions, 16 FP multiplications,
 | 
						|
 * (or, 16 additions, 8 multiplications, 8 fused multiply/add),
 | 
						|
 * 21 stack variables, 0 constants, and 16 memory accesses
 | 
						|
 */
 | 
						|
#include "dft/scalar/t.h"
 | 
						|
 | 
						|
static void t2_4(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
 | 
						|
{
 | 
						|
     {
 | 
						|
	  INT m;
 | 
						|
	  for (m = mb, W = W + (mb * 4); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 4, MAKE_VOLATILE_STRIDE(8, rs)) {
 | 
						|
	       E T2, T4, T3, T5, T6, T8;
 | 
						|
	       T2 = W[0];
 | 
						|
	       T4 = W[1];
 | 
						|
	       T3 = W[2];
 | 
						|
	       T5 = W[3];
 | 
						|
	       T6 = FMA(T2, T3, T4 * T5);
 | 
						|
	       T8 = FNMS(T4, T3, T2 * T5);
 | 
						|
	       {
 | 
						|
		    E T1, Tp, Ta, To, Te, Tk, Th, Tl, T7, T9;
 | 
						|
		    T1 = ri[0];
 | 
						|
		    Tp = ii[0];
 | 
						|
		    T7 = ri[WS(rs, 2)];
 | 
						|
		    T9 = ii[WS(rs, 2)];
 | 
						|
		    Ta = FMA(T6, T7, T8 * T9);
 | 
						|
		    To = FNMS(T8, T7, T6 * T9);
 | 
						|
		    {
 | 
						|
			 E Tc, Td, Tf, Tg;
 | 
						|
			 Tc = ri[WS(rs, 1)];
 | 
						|
			 Td = ii[WS(rs, 1)];
 | 
						|
			 Te = FMA(T2, Tc, T4 * Td);
 | 
						|
			 Tk = FNMS(T4, Tc, T2 * Td);
 | 
						|
			 Tf = ri[WS(rs, 3)];
 | 
						|
			 Tg = ii[WS(rs, 3)];
 | 
						|
			 Th = FMA(T3, Tf, T5 * Tg);
 | 
						|
			 Tl = FNMS(T5, Tf, T3 * Tg);
 | 
						|
		    }
 | 
						|
		    {
 | 
						|
			 E Tb, Ti, Tn, Tq;
 | 
						|
			 Tb = T1 + Ta;
 | 
						|
			 Ti = Te + Th;
 | 
						|
			 ri[WS(rs, 2)] = Tb - Ti;
 | 
						|
			 ri[0] = Tb + Ti;
 | 
						|
			 Tn = Tk + Tl;
 | 
						|
			 Tq = To + Tp;
 | 
						|
			 ii[0] = Tn + Tq;
 | 
						|
			 ii[WS(rs, 2)] = Tq - Tn;
 | 
						|
		    }
 | 
						|
		    {
 | 
						|
			 E Tj, Tm, Tr, Ts;
 | 
						|
			 Tj = T1 - Ta;
 | 
						|
			 Tm = Tk - Tl;
 | 
						|
			 ri[WS(rs, 3)] = Tj - Tm;
 | 
						|
			 ri[WS(rs, 1)] = Tj + Tm;
 | 
						|
			 Tr = Tp - To;
 | 
						|
			 Ts = Te - Th;
 | 
						|
			 ii[WS(rs, 1)] = Tr - Ts;
 | 
						|
			 ii[WS(rs, 3)] = Ts + Tr;
 | 
						|
		    }
 | 
						|
	       }
 | 
						|
	  }
 | 
						|
     }
 | 
						|
}
 | 
						|
 | 
						|
static const tw_instr twinstr[] = {
 | 
						|
     { TW_CEXP, 0, 1 },
 | 
						|
     { TW_CEXP, 0, 3 },
 | 
						|
     { TW_NEXT, 1, 0 }
 | 
						|
};
 | 
						|
 | 
						|
static const ct_desc desc = { 4, "t2_4", twinstr, &GENUS, { 16, 8, 8, 0 }, 0, 0, 0 };
 | 
						|
 | 
						|
void X(codelet_t2_4) (planner *p) {
 | 
						|
     X(kdft_dit_register) (p, t2_4, &desc);
 | 
						|
}
 | 
						|
#endif
 |