furnace/src/engine/platform/bifurcator.cpp
2024-04-21 03:34:20 -05:00

380 lines
11 KiB
C++

/**
* Furnace Tracker - multi-system chiptune tracker
* Copyright (C) 2021-2023 tildearrow and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#define _USE_MATH_DEFINES
#include "bifurcator.h"
#include "../engine.h"
#include "../filter.h"
#include <math.h>
#define CHIP_FREQBASE 65536
#define rWrite(a,v) {if(!skipRegisterWrites) {regPool[a]=v; if(dumpWrites) addWrite(a,v); }}
const char* regCheatSheetBifurcator[]={
"CHx_State", "x*8+0",
"CHx_Param", "x*8+2",
"CHx_Freq", "x*8+4",
"CHx_LVol", "x*8+6",
"CHx_RVol", "x*8+7",
NULL
};
const char** DivPlatformBifurcator::getRegisterSheet() {
return regCheatSheetBifurcator;
}
void DivPlatformBifurcator::acquire(short** buf, size_t len) {
for (int i=0; i<4; i++) {
chan[i].curx=regPool[i*8]|(regPool[i*8+1]<<8);
chan[i].param=regPool[i*8+2]|(regPool[i*8+3]<<8);
chan[i].freq=regPool[i*8+4]|(regPool[i*8+5]<<8);
chan[i].chVolL=regPool[i*8+6];
chan[i].chVolR=regPool[i*8+7];
}
for (size_t h=0; h<len; h++) {
int l=0;
int r=0;
for (int i=0; i<4; i++) {
chan[i].audSub+=chan[i].freq;
if (chan[i].audSub>=65536) {
int64_t newx=(int64_t)chan[i].curx*(chan[i].param+65536)/32768;
newx*=65536-chan[i].curx;
chan[i].curx=(int)(newx/65536);
chan[i].audSub&=65535;
}
int out=chan[i].curx-32768;
int outL=out*chan[i].chVolL/256;
int outR=out*chan[i].chVolR/256;
oscBuf[i]->data[oscBuf[i]->needle++]=(short)((outL+outR)/2);
l+=outL/4;
r+=outR/4;
}
buf[0][h]=(short)l;
buf[1][h]=(short)r;
}
for (int i=0; i<4; i++) {
regPool[i*8]=chan[i].curx&0xff;
regPool[i*8+1]=chan[i].curx>>8;
}
}
void DivPlatformBifurcator::tick(bool sysTick) {
for (int i=0; i<4; i++) {
chan[i].std.next();
if (chan[i].std.vol.had) {
chan[i].outVol=(chan[i].vol*MIN(chan[i].std.vol.val,255))/255;
chan[i].volChangedL=true;
chan[i].volChangedR=true;
}
if (NEW_ARP_STRAT) {
chan[i].handleArp();
} else if (chan[i].std.arp.had) {
if (!chan[i].inPorta) {
chan[i].baseFreq=NOTE_FREQUENCY(parent->calcArp(chan[i].note,chan[i].std.arp.val));
}
chan[i].freqChanged=true;
}
if (chan[i].std.duty.had) {
rWrite(i*8+2,chan[i].std.duty.val&0xff);
rWrite(i*8+3,chan[i].std.duty.val>>8);
}
if (chan[i].std.pitch.had) {
if (chan[i].std.pitch.mode) {
chan[i].pitch2+=chan[i].std.pitch.val;
CLAMP_VAR(chan[i].pitch2,-32768,32767);
} else {
chan[i].pitch2=chan[i].std.pitch.val;
}
chan[i].freqChanged=true;
}
if (chan[i].std.panL.had) {
chan[i].chPanL=(255*(chan[i].std.panL.val&255))/255;
chan[i].volChangedL=true;
}
if (chan[i].std.panR.had) {
chan[i].chPanR=(255*(chan[i].std.panR.val&255))/255;
chan[i].volChangedR=true;
}
if (chan[i].std.phaseReset.had) {
if ((chan[i].std.phaseReset.val==1) && chan[i].active) {
rWrite(i*8,1);
rWrite(i*8+1,0);
}
}
if (chan[i].std.ex1.had) {
rWrite(i*8,chan[i].std.ex1.val&0xff);
rWrite(i*8+1,chan[i].std.ex1.val>>8);
}
if (chan[i].freqChanged || chan[i].keyOn || chan[i].keyOff) {
chan[i].freq=parent->calcFreq(chan[i].baseFreq,chan[i].pitch,chan[i].fixedArp?chan[i].baseNoteOverride:chan[i].arpOff,chan[i].fixedArp,false,2,chan[i].pitch2,chipClock,CHIP_FREQBASE);
if (chan[i].freq>65535) chan[i].freq=65535;
rWrite(i*8+4,chan[i].freq&0xff);
rWrite(i*8+5,chan[i].freq>>8);
if (chan[i].keyOn) {
if (!chan[i].std.vol.had) {
chan[i].outVol=chan[i].vol;
}
chan[i].volChangedL=true;
chan[i].volChangedR=true;
chan[i].keyOn=false;
}
if (chan[i].keyOff) {
chan[i].volChangedL=true;
chan[i].volChangedR=true;
chan[i].keyOff=false;
}
if (chan[i].freqChanged) {
chan[i].freqChanged=false;
}
}
if (chan[i].volChangedL) {
int vol=(isMuted[i] || !chan[i].active)?0:(chan[i].outVol*chan[i].chPanL/255);
rWrite(i*8+6,vol);
chan[i].volChangedL=false;
}
if (chan[i].volChangedR) {
int vol=(isMuted[i] || !chan[i].active)?0:(chan[i].outVol*chan[i].chPanR/255);
rWrite(i*8+7,vol);
chan[i].volChangedR=false;
}
}
}
int DivPlatformBifurcator::dispatch(DivCommand c) {
switch (c.cmd) {
case DIV_CMD_NOTE_ON: {
DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_BIFURCATOR);
if (c.value!=DIV_NOTE_NULL) {
chan[c.chan].baseFreq=round(NOTE_FREQUENCY(c.value));
chan[c.chan].freqChanged=true;
chan[c.chan].note=c.value;
}
chan[c.chan].active=true;
chan[c.chan].keyOn=true;
chan[c.chan].macroInit(ins);
if (!parent->song.brokenOutVol && !chan[c.chan].std.vol.will) {
chan[c.chan].outVol=chan[c.chan].vol;
}
break;
}
case DIV_CMD_NOTE_OFF:
chan[c.chan].active=false;
chan[c.chan].keyOff=true;
chan[c.chan].macroInit(NULL);
break;
case DIV_CMD_NOTE_OFF_ENV:
case DIV_CMD_ENV_RELEASE:
chan[c.chan].std.release();
break;
case DIV_CMD_INSTRUMENT:
if (chan[c.chan].ins!=c.value || c.value2==1) {
chan[c.chan].ins=c.value;
}
break;
case DIV_CMD_VOLUME:
chan[c.chan].vol=c.value;
if (!chan[c.chan].std.vol.has) {
chan[c.chan].outVol=c.value;
}
chan[c.chan].volChangedL=true;
chan[c.chan].volChangedR=true;
break;
case DIV_CMD_GET_VOLUME:
if (chan[c.chan].std.vol.has) {
return chan[c.chan].vol;
}
return chan[c.chan].outVol;
break;
case DIV_CMD_PANNING:
chan[c.chan].chPanL=c.value;
chan[c.chan].chPanR=c.value2;
chan[c.chan].volChangedL=true;
chan[c.chan].volChangedR=true;
break;
case DIV_CMD_PITCH:
chan[c.chan].pitch=c.value;
chan[c.chan].freqChanged=true;
break;
case DIV_CMD_NOTE_PORTA: {
int destFreq=NOTE_FREQUENCY(c.value2);
bool return2=false;
if (destFreq>chan[c.chan].baseFreq) {
chan[c.chan].baseFreq+=c.value;
if (chan[c.chan].baseFreq>=destFreq) {
chan[c.chan].baseFreq=destFreq;
return2=true;
}
} else {
chan[c.chan].baseFreq-=c.value;
if (chan[c.chan].baseFreq<=destFreq) {
chan[c.chan].baseFreq=destFreq;
return2=true;
}
}
chan[c.chan].freqChanged=true;
if (return2) {
chan[c.chan].inPorta=false;
return 2;
}
break;
}
case DIV_CMD_LEGATO: {
chan[c.chan].baseFreq=NOTE_FREQUENCY(c.value+((HACKY_LEGATO_MESS)?(chan[c.chan].std.arp.val-12):(0)));
chan[c.chan].freqChanged=true;
chan[c.chan].note=c.value;
break;
}
case DIV_CMD_PRE_PORTA:
if (chan[c.chan].active && c.value2) {
if (parent->song.resetMacroOnPorta) chan[c.chan].macroInit(parent->getIns(chan[c.chan].ins,DIV_INS_AMIGA));
}
if (!chan[c.chan].inPorta && c.value && !parent->song.brokenPortaArp && chan[c.chan].std.arp.will && !NEW_ARP_STRAT) chan[c.chan].baseFreq=NOTE_FREQUENCY(chan[c.chan].note);
chan[c.chan].inPorta=c.value;
break;
case DIV_CMD_BIFURCATOR_STATE_LOAD:
rWrite(c.chan*8+c.value,c.value2);
break;
case DIV_CMD_BIFURCATOR_PARAMETER:
rWrite(c.chan*8+2+c.value,c.value2);
break;
case DIV_CMD_GET_VOLMAX:
return 255;
break;
case DIV_CMD_MACRO_OFF:
chan[c.chan].std.mask(c.value,true);
break;
case DIV_CMD_MACRO_ON:
chan[c.chan].std.mask(c.value,false);
break;
case DIV_CMD_MACRO_RESTART:
chan[c.chan].std.restart(c.value);
break;
default:
break;
}
return 1;
}
void DivPlatformBifurcator::muteChannel(int ch, bool mute) {
isMuted[ch]=mute;
chan[ch].volChangedL=true;
chan[ch].volChangedR=true;
}
void DivPlatformBifurcator::forceIns() {
for (int i=0; i<4; i++) {
chan[i].insChanged=true;
chan[i].volChangedL=true;
chan[i].volChangedR=true;
chan[i].active=false;
}
}
void* DivPlatformBifurcator::getChanState(int ch) {
return &chan[ch];
}
DivDispatchOscBuffer* DivPlatformBifurcator::getOscBuffer(int ch) {
return oscBuf[ch];
}
unsigned char* DivPlatformBifurcator::getRegisterPool() {
return (unsigned char*)regPool;
}
int DivPlatformBifurcator::getRegisterPoolSize() {
return 8*4;
}
void DivPlatformBifurcator::reset() {
memset(regPool,0,8*4);
for (int i=0; i<4; i++) {
chan[i]=DivPlatformBifurcator::Channel();
chan[i].std.setEngine(parent);
rWrite(i*8,chan[i].curx&0xff);
rWrite(i*8+1,chan[i].curx>>8);
rWrite(i*8+2,chan[i].param&0xff);
rWrite(i*8+3,chan[i].param>>8);
}
}
int DivPlatformBifurcator::getOutputCount() {
return 2;
}
DivMacroInt* DivPlatformBifurcator::getChanMacroInt(int ch) {
return &chan[ch].std;
}
unsigned short DivPlatformBifurcator::getPan(int ch) {
return (chan[ch].chPanL<<8)|(chan[ch].chPanR);
}
void DivPlatformBifurcator::notifyInsChange(int ins) {
for (int i=0; i<4; i++) {
if (chan[i].ins==ins) {
chan[i].insChanged=true;
}
}
}
void DivPlatformBifurcator::notifyInsDeletion(void* ins) {
for (int i=0; i<4; i++) {
chan[i].std.notifyInsDeletion((DivInstrument*)ins);
}
}
void DivPlatformBifurcator::setFlags(const DivConfig& flags) {
chipClock=1000000;
CHECK_CUSTOM_CLOCK;
rate=chipClock/16;
for (int i=0; i<4; i++) {
oscBuf[i]->rate=rate;
}
}
void DivPlatformBifurcator::poke(unsigned int addr, unsigned short val) {
rWrite(addr,val);
}
void DivPlatformBifurcator::poke(std::vector<DivRegWrite>& wlist) {
for (DivRegWrite& i: wlist) rWrite(i.addr,i.val);
}
int DivPlatformBifurcator::init(DivEngine* p, int channels, int sugRate, const DivConfig& flags) {
parent=p;
dumpWrites=false;
skipRegisterWrites=false;
for (int i=0; i<4; i++) {
isMuted[i]=false;
oscBuf[i]=new DivDispatchOscBuffer;
}
setFlags(flags);
reset();
return 4;
}
void DivPlatformBifurcator::quit() {
for (int i=0; i<4; i++) {
delete oscBuf[i];
}
}