308 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
			
		
		
	
	
			308 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
| (*
 | |
|  * Copyright (c) 1997-1999 Massachusetts Institute of Technology
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  *)
 | |
| 
 | |
| 
 | |
| (* This is the part of the generator that actually computes the FFT
 | |
|    in symbolic form *)
 | |
| 
 | |
| open Complex
 | |
| open Util
 | |
| 
 | |
| (* choose a suitable factor of n *)
 | |
| let choose_factor n =
 | |
|   (* first choice: i such that gcd(i, n / i) = 1, i as big as possible *)
 | |
|   let choose1 n =
 | |
|     let rec loop i f =
 | |
|       if (i * i > n) then f
 | |
|       else if ((n mod i) == 0 && gcd i (n / i) == 1) then loop (i + 1) i
 | |
|       else loop (i + 1) f
 | |
|     in loop 1 1
 | |
| 
 | |
|   (* second choice: the biggest factor i of n, where i < sqrt(n), if any *)
 | |
|   and choose2 n =
 | |
|     let rec loop i f =
 | |
|       if (i * i > n) then f
 | |
|       else if ((n mod i) == 0) then loop (i + 1) i
 | |
|       else loop (i + 1) f
 | |
|     in loop 1 1
 | |
| 
 | |
|   in let i = choose1 n in
 | |
|   if (i > 1) then i
 | |
|   else choose2 n
 | |
| 
 | |
| let is_power_of_two n = (n > 0) && ((n - 1) land n == 0)
 | |
|   
 | |
| let rec dft_prime sign n input = 
 | |
|   let sum filter i =
 | |
|     sigma 0 n (fun j ->
 | |
|       let coeff = filter (exp n (sign * i * j))
 | |
|       in coeff @* (input j)) in
 | |
|   let computation_even = array n (sum identity)
 | |
|   and computation_odd =
 | |
|     let sumr = array n (sum real)
 | |
|     and sumi = array n (sum ((times Complex.i) @@ imag)) in
 | |
|     array n (fun i ->
 | |
|       if (i = 0) then
 | |
| 	(* expose some common subexpressions *)
 | |
| 	input 0 @+ 
 | |
| 	sigma 1 ((n + 1) / 2) (fun j -> input j @+ input (n - j))
 | |
|       else
 | |
| 	let i' = min i (n - i) in
 | |
| 	if (i < n - i) then 
 | |
| 	  sumr i' @+ sumi i'
 | |
| 	else
 | |
| 	  sumr i' @- sumi i') in
 | |
|   if (n >= !Magic.rader_min) then
 | |
|     dft_rader sign n input
 | |
|   else if (n == 2) then
 | |
|     computation_even
 | |
|   else
 | |
|     computation_odd 
 | |
| 
 | |
| 
 | |
| and dft_rader sign p input =
 | |
|   let half = 
 | |
|     let one_half = inverse_int 2 in
 | |
|     times one_half
 | |
| 
 | |
|   and make_product n a b =
 | |
|     let scale_factor = inverse_int n in
 | |
|     array n (fun i -> a i @* (scale_factor @* b i)) in
 | |
| 
 | |
|   (* generates a convolution using ffts.  (all arguments are the
 | |
|      same as to gen_convolution, below) *)
 | |
|   let gen_convolution_by_fft n a b addtoall =
 | |
|     let fft_a = dft 1 n a
 | |
|     and fft_b = dft 1 n b in 
 | |
| 
 | |
|     let fft_ab = make_product n fft_a fft_b
 | |
|     and dc_term i = if (i == 0) then addtoall else zero in
 | |
| 
 | |
|     let fft_ab1 = array n (fun i -> fft_ab i @+ dc_term i)
 | |
|     and sum = fft_a 0 in
 | |
|     let conv = dft (-1) n fft_ab1 in
 | |
|     (sum, conv)
 | |
| 
 | |
|   (* alternate routine for convolution.  Seems to work better for
 | |
|      small sizes.  I have no idea why. *)
 | |
|   and gen_convolution_by_fft_alt n a b addtoall =
 | |
|     let ap = array n (fun i -> half (a i @+ a ((n - i) mod n)))
 | |
|     and am = array n (fun i -> half (a i @- a ((n - i) mod n)))
 | |
|     and bp = array n (fun i -> half (b i @+ b ((n - i) mod n)))
 | |
|     and bm = array n (fun i -> half (b i @- b ((n - i) mod n)))
 | |
|     in
 | |
| 
 | |
|     let fft_ap = dft 1 n ap
 | |
|     and fft_am = dft 1 n am
 | |
|     and fft_bp = dft 1 n bp
 | |
|     and fft_bm = dft 1 n bm in
 | |
| 
 | |
|     let fft_abpp = make_product n fft_ap fft_bp
 | |
|     and fft_abpm = make_product n fft_ap fft_bm
 | |
|     and fft_abmp = make_product n fft_am fft_bp
 | |
|     and fft_abmm = make_product n fft_am fft_bm 
 | |
|     and sum = fft_ap 0 @+ fft_am 0
 | |
|     and dc_term i = if (i == 0) then addtoall else zero in
 | |
| 
 | |
|     let fft_ab1 = array n (fun i -> (fft_abpp i @+ fft_abmm i) @+ dc_term i)
 | |
|     and fft_ab2 = array n (fun i -> fft_abpm i @+ fft_abmp i) in
 | |
|     let conv1 = dft (-1) n fft_ab1 
 | |
|     and conv2 = dft (-1) n fft_ab2 in
 | |
|     let conv = array n (fun i ->
 | |
|       conv1 i @+ conv2 i) in
 | |
|     (sum, conv) 
 | |
| 
 | |
|     (* generator of assignment list assigning conv to the convolution of
 | |
|        a and b, all of which are of length n.  addtoall is added to
 | |
|        all of the elements of the result.  Returns (sum, convolution) pair
 | |
|        where sum is the sum of the elements of a. *)
 | |
| 
 | |
|   in let gen_convolution = 
 | |
|     if (p <= !Magic.alternate_convolution) then 
 | |
|       gen_convolution_by_fft_alt
 | |
|     else
 | |
|       gen_convolution_by_fft
 | |
| 
 | |
|   (* fft generator for prime n = p using Rader's algorithm for
 | |
|      turning the fft into a convolution, which then can be
 | |
|      performed in a variety of ways *)
 | |
|   in  
 | |
|     let g = find_generator p in
 | |
|     let ginv = pow_mod g (p - 2) p in
 | |
|     let input_perm = array p (fun i -> input (pow_mod g i p))
 | |
|     and omega_perm = array p (fun i -> exp p (sign * (pow_mod ginv i p)))
 | |
|     and output_perm = array p (fun i -> pow_mod ginv i p)
 | |
|     in let (sum, conv) = 
 | |
|       (gen_convolution (p - 1)  input_perm omega_perm (input 0))
 | |
|     in array p (fun i ->
 | |
|       if (i = 0) then
 | |
| 	input 0 @+ sum
 | |
|       else
 | |
| 	let i' = suchthat 0 (fun i' -> i = output_perm i')
 | |
| 	in conv i')
 | |
| 
 | |
| (* our modified version of the conjugate-pair split-radix algorithm,
 | |
|    which reduces the number of multiplications by rescaling the 
 | |
|    sub-transforms (power-of-two n's only) *)
 | |
| and newsplit sign n input =
 | |
|   let rec s n k = (* recursive scale factor *)
 | |
|     if n <= 4 then
 | |
|       one
 | |
|     else 
 | |
|       let k4 = (abs k) mod (n / 4) in
 | |
|       let k4' = if k4 <= (n / 8) then k4 else (n/4 - k4) in
 | |
|       (s (n / 4) k4') @* (real (exp n k4'))
 | |
| 			  
 | |
|   and sinv n k = (* 1 / s(n,k) *)
 | |
|     if n <= 4 then
 | |
|       one
 | |
|     else 
 | |
|       let k4 = (abs k) mod (n / 4) in
 | |
|       let k4' = if k4 <= (n / 8) then k4 else (n/4 - k4) in
 | |
|       (sinv (n / 4) k4') @* (sec n k4')
 | |
| 
 | |
|   in let sdiv2 n k = (s n k) @* (sinv (2*n) k) (* s(n,k) / s(2*n,k) *)
 | |
|   and sdiv4 n k = (* s(n,k) / s(4*n,k) *)
 | |
|     let k4 = (abs k) mod n in
 | |
|     sec (4*n) (if k4 <= (n / 2) then k4 else (n - k4))
 | |
|       
 | |
|   in let t n k = (exp n k) @* (sdiv4 (n/4) k)
 | |
| 
 | |
|   and dft1 input = input
 | |
|   and dft2 input = array 2 (fun k -> (input 0) @+ ((input 1) @* exp 2 k))
 | |
| 
 | |
|   in let rec newsplit0 sign n input =
 | |
|     if (n == 1) then dft1 input
 | |
|     else if (n == 2) then dft2 input
 | |
|     else let u = newsplit0 sign (n / 2) (fun i -> input (i*2))
 | |
|     and z = newsplitS sign (n / 4) (fun i -> input (i*4 + 1))
 | |
|     and z' = newsplitS sign (n / 4) (fun i -> input ((n + i*4 - 1) mod n)) 
 | |
|     and twid = array n (fun k -> s (n/4) k @* exp n (sign * k)) in
 | |
|     let w = array n (fun k -> twid k @* z (k mod (n / 4)))
 | |
|     and w' = array n (fun k -> conj (twid k) @* z' (k mod (n / 4))) in
 | |
|     let ww = array n (fun k -> w k @+ w' k) in
 | |
|     array n (fun k -> u (k mod (n / 2)) @+ ww k)
 | |
|       
 | |
|   and newsplitS sign n input =
 | |
|     if (n == 1) then dft1 input
 | |
|     else if (n == 2) then dft2 input
 | |
|     else let u = newsplitS2 sign (n / 2) (fun i -> input (i*2))
 | |
|     and z = newsplitS sign (n / 4) (fun i -> input (i*4 + 1))
 | |
|     and z' = newsplitS sign (n / 4) (fun i -> input ((n + i*4 - 1) mod n)) in
 | |
|     let w = array n (fun k -> t n (sign * k) @* z (k mod (n / 4)))
 | |
|     and w' = array n (fun k -> conj (t n (sign * k)) @* z' (k mod (n / 4))) in
 | |
|     let ww = array n (fun k -> w k @+ w' k) in
 | |
|     array n (fun k -> u (k mod (n / 2)) @+ ww k)
 | |
|       
 | |
|   and newsplitS2 sign n input =
 | |
|     if (n == 1) then dft1 input
 | |
|     else if (n == 2) then dft2 input
 | |
|     else let u = newsplitS4 sign (n / 2) (fun i -> input (i*2))
 | |
|     and z = newsplitS sign (n / 4) (fun i -> input (i*4 + 1))
 | |
|     and z' = newsplitS sign (n / 4) (fun i -> input ((n + i*4 - 1) mod n)) in
 | |
|     let w = array n (fun k -> t n (sign * k) @* z (k mod (n / 4)))
 | |
|     and w' = array n (fun k -> conj (t n (sign * k)) @* z' (k mod (n / 4))) in
 | |
|     let ww = array n (fun k -> (w k @+ w' k) @* (sdiv2 n k)) in
 | |
|     array n (fun k -> u (k mod (n / 2)) @+ ww k)
 | |
|       
 | |
|   and newsplitS4 sign n input =
 | |
|     if (n == 1) then dft1 input
 | |
|     else if (n == 2) then 
 | |
|       let f = dft2 input
 | |
|       in array 2 (fun k -> (f k) @* (sinv 8 k))
 | |
|     else let u = newsplitS2 sign (n / 2) (fun i -> input (i*2))
 | |
|     and z = newsplitS sign (n / 4) (fun i -> input (i*4 + 1))
 | |
|     and z' = newsplitS sign (n / 4) (fun i -> input ((n + i*4 - 1) mod n)) in
 | |
|     let w = array n (fun k -> t n (sign * k) @* z (k mod (n / 4)))
 | |
|     and w' = array n (fun k -> conj (t n (sign * k)) @* z' (k mod (n / 4))) in
 | |
|     let ww = array n (fun k -> w k @+ w' k) in
 | |
|     array n (fun k -> (u (k mod (n / 2)) @+ ww k) @* (sdiv4 n k))
 | |
|       
 | |
|   in newsplit0 sign n input
 | |
|  
 | |
| and dft sign n input =
 | |
|   let rec cooley_tukey sign n1 n2 input =
 | |
|     let tmp1 = 
 | |
|       array n2 (fun i2 -> 
 | |
| 	dft sign n1 (fun i1 -> input (i1 * n2 + i2))) in
 | |
|     let tmp2 =  
 | |
|       array n1 (fun i1 ->
 | |
| 	array n2 (fun i2 ->
 | |
| 	  exp n (sign * i1 * i2) @* tmp1 i2 i1)) in
 | |
|     let tmp3 = array n1 (fun i1 -> dft sign n2 (tmp2 i1)) in
 | |
|     (fun i -> tmp3 (i mod n1) (i / n1))
 | |
| 
 | |
|   (*
 | |
|    * This is "exponent -1" split-radix by Dan Bernstein.
 | |
|    *)
 | |
|   and split_radix_dit sign n input =
 | |
|     let f0 = dft sign (n / 2) (fun i -> input (i * 2))
 | |
|     and f10 = dft sign (n / 4) (fun i -> input (i * 4 + 1))
 | |
|     and f11 = dft sign (n / 4) (fun i -> input ((n + i * 4 - 1) mod n)) in
 | |
|     let g10 = array n (fun k ->
 | |
|       exp n (sign * k) @* f10 (k mod (n / 4)))
 | |
|     and g11 = array n (fun k ->
 | |
|       exp n (- sign * k) @* f11 (k mod (n / 4))) in
 | |
|     let g1 = array n (fun k -> g10 k @+ g11 k) in
 | |
|     array n (fun k -> f0 (k mod (n / 2)) @+ g1 k)
 | |
| 
 | |
|   and split_radix_dif sign n input =
 | |
|     let n2 = n / 2 and n4 = n / 4 in
 | |
|     let x0 = array n2 (fun i -> input i @+ input (i + n2))
 | |
|     and x10 = array n4 (fun i -> input i @- input (i + n2))
 | |
|     and x11 = array n4 (fun i ->
 | |
| 	input (i + n4) @- input (i + n2 + n4)) in
 | |
|     let x1 k i = 
 | |
|       exp n (k * i * sign) @* (x10 i @+ exp 4 (k * sign) @* x11 i) in
 | |
|     let f0 = dft sign n2 x0 
 | |
|     and f1 = array 4 (fun k -> dft sign n4 (x1 k)) in
 | |
|     array n (fun k ->
 | |
|       if k mod 2 = 0 then f0 (k / 2)
 | |
|       else let k' = k mod 4 in f1 k' ((k - k') / 4))
 | |
| 
 | |
|   and prime_factor sign n1 n2 input =
 | |
|     let tmp1 = array n2 (fun i2 ->
 | |
|       dft sign n1 (fun i1 -> input ((i1 * n2 + i2 * n1) mod n)))
 | |
|     in let tmp2 = array n1 (fun i1 ->
 | |
|       dft sign n2 (fun k2 -> tmp1 k2 i1))
 | |
|     in fun i -> tmp2 (i mod n1) (i mod n2)
 | |
| 
 | |
|   in let algorithm sign n =
 | |
|     let r = choose_factor n in
 | |
|     if List.mem n !Magic.rader_list then
 | |
|       (* special cases *)
 | |
|       dft_rader sign n
 | |
|     else if (r == 1) then  (* n is prime *)
 | |
|       dft_prime sign n
 | |
|     else if (gcd r (n / r)) == 1 then
 | |
|       prime_factor sign r (n / r)
 | |
|     else if (n mod 4 = 0 && n > 4) then
 | |
|       if !Magic.newsplit && is_power_of_two n then
 | |
| 	newsplit sign n
 | |
|       else if !Magic.dif_split_radix then
 | |
| 	split_radix_dif sign n
 | |
|       else
 | |
| 	split_radix_dit sign n
 | |
|     else 
 | |
|       cooley_tukey sign r (n / r)
 | |
|   in
 | |
|   array n (algorithm sign n input)
 | 
