296 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			296 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* This file was automatically generated --- DO NOT EDIT */
 | |
| /* Generated on Tue Sep 14 10:44:27 EDT 2021 */
 | |
| 
 | |
| #include "dft/codelet-dft.h"
 | |
| 
 | |
| #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 6 -name t1_6 -include dft/scalar/t.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 46 FP additions, 32 FP multiplications,
 | |
|  * (or, 24 additions, 10 multiplications, 22 fused multiply/add),
 | |
|  * 31 stack variables, 2 constants, and 24 memory accesses
 | |
|  */
 | |
| #include "dft/scalar/t.h"
 | |
| 
 | |
| static void t1_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DK(KP866025403, +0.866025403784438646763723170752936183471402627);
 | |
|      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(12, rs)) {
 | |
| 	       E T1, TX, T7, TW, Tl, TR, TB, TJ, Ty, TS, TC, TO;
 | |
| 	       T1 = ri[0];
 | |
| 	       TX = ii[0];
 | |
| 	       {
 | |
| 		    E T3, T6, T4, TV, T2, T5;
 | |
| 		    T3 = ri[WS(rs, 3)];
 | |
| 		    T6 = ii[WS(rs, 3)];
 | |
| 		    T2 = W[4];
 | |
| 		    T4 = T2 * T3;
 | |
| 		    TV = T2 * T6;
 | |
| 		    T5 = W[5];
 | |
| 		    T7 = FMA(T5, T6, T4);
 | |
| 		    TW = FNMS(T5, T3, TV);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Ta, Td, Tb, TF, Tg, Tj, Th, TH, T9, Tf;
 | |
| 		    Ta = ri[WS(rs, 2)];
 | |
| 		    Td = ii[WS(rs, 2)];
 | |
| 		    T9 = W[2];
 | |
| 		    Tb = T9 * Ta;
 | |
| 		    TF = T9 * Td;
 | |
| 		    Tg = ri[WS(rs, 5)];
 | |
| 		    Tj = ii[WS(rs, 5)];
 | |
| 		    Tf = W[8];
 | |
| 		    Th = Tf * Tg;
 | |
| 		    TH = Tf * Tj;
 | |
| 		    {
 | |
| 			 E Te, TG, Tk, TI, Tc, Ti;
 | |
| 			 Tc = W[3];
 | |
| 			 Te = FMA(Tc, Td, Tb);
 | |
| 			 TG = FNMS(Tc, Ta, TF);
 | |
| 			 Ti = W[9];
 | |
| 			 Tk = FMA(Ti, Tj, Th);
 | |
| 			 TI = FNMS(Ti, Tg, TH);
 | |
| 			 Tl = Te - Tk;
 | |
| 			 TR = TG + TI;
 | |
| 			 TB = Te + Tk;
 | |
| 			 TJ = TG - TI;
 | |
| 		    }
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tn, Tq, To, TK, Tt, Tw, Tu, TM, Tm, Ts;
 | |
| 		    Tn = ri[WS(rs, 4)];
 | |
| 		    Tq = ii[WS(rs, 4)];
 | |
| 		    Tm = W[6];
 | |
| 		    To = Tm * Tn;
 | |
| 		    TK = Tm * Tq;
 | |
| 		    Tt = ri[WS(rs, 1)];
 | |
| 		    Tw = ii[WS(rs, 1)];
 | |
| 		    Ts = W[0];
 | |
| 		    Tu = Ts * Tt;
 | |
| 		    TM = Ts * Tw;
 | |
| 		    {
 | |
| 			 E Tr, TL, Tx, TN, Tp, Tv;
 | |
| 			 Tp = W[7];
 | |
| 			 Tr = FMA(Tp, Tq, To);
 | |
| 			 TL = FNMS(Tp, Tn, TK);
 | |
| 			 Tv = W[1];
 | |
| 			 Tx = FMA(Tv, Tw, Tu);
 | |
| 			 TN = FNMS(Tv, Tt, TM);
 | |
| 			 Ty = Tr - Tx;
 | |
| 			 TS = TL + TN;
 | |
| 			 TC = Tr + Tx;
 | |
| 			 TO = TL - TN;
 | |
| 		    }
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TP, T8, Tz, TE;
 | |
| 		    TP = TJ - TO;
 | |
| 		    T8 = T1 - T7;
 | |
| 		    Tz = Tl + Ty;
 | |
| 		    TE = FNMS(KP500000000, Tz, T8);
 | |
| 		    ri[WS(rs, 3)] = T8 + Tz;
 | |
| 		    ri[WS(rs, 1)] = FMA(KP866025403, TP, TE);
 | |
| 		    ri[WS(rs, 5)] = FNMS(KP866025403, TP, TE);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T14, T11, T12, T13;
 | |
| 		    T14 = Ty - Tl;
 | |
| 		    T11 = TX - TW;
 | |
| 		    T12 = TJ + TO;
 | |
| 		    T13 = FNMS(KP500000000, T12, T11);
 | |
| 		    ii[WS(rs, 1)] = FMA(KP866025403, T14, T13);
 | |
| 		    ii[WS(rs, 3)] = T12 + T11;
 | |
| 		    ii[WS(rs, 5)] = FNMS(KP866025403, T14, T13);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TT, TA, TD, TQ;
 | |
| 		    TT = TR - TS;
 | |
| 		    TA = T1 + T7;
 | |
| 		    TD = TB + TC;
 | |
| 		    TQ = FNMS(KP500000000, TD, TA);
 | |
| 		    ri[0] = TA + TD;
 | |
| 		    ri[WS(rs, 4)] = FMA(KP866025403, TT, TQ);
 | |
| 		    ri[WS(rs, 2)] = FNMS(KP866025403, TT, TQ);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T10, TU, TY, TZ;
 | |
| 		    T10 = TC - TB;
 | |
| 		    TU = TR + TS;
 | |
| 		    TY = TW + TX;
 | |
| 		    TZ = FNMS(KP500000000, TU, TY);
 | |
| 		    ii[0] = TU + TY;
 | |
| 		    ii[WS(rs, 4)] = FMA(KP866025403, T10, TZ);
 | |
| 		    ii[WS(rs, 2)] = FNMS(KP866025403, T10, TZ);
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      { TW_FULL, 0, 6 },
 | |
|      { TW_NEXT, 1, 0 }
 | |
| };
 | |
| 
 | |
| static const ct_desc desc = { 6, "t1_6", twinstr, &GENUS, { 24, 10, 22, 0 }, 0, 0, 0 };
 | |
| 
 | |
| void X(codelet_t1_6) (planner *p) {
 | |
|      X(kdft_dit_register) (p, t1_6, &desc);
 | |
| }
 | |
| #else
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 6 -name t1_6 -include dft/scalar/t.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 46 FP additions, 28 FP multiplications,
 | |
|  * (or, 32 additions, 14 multiplications, 14 fused multiply/add),
 | |
|  * 23 stack variables, 2 constants, and 24 memory accesses
 | |
|  */
 | |
| #include "dft/scalar/t.h"
 | |
| 
 | |
| static void t1_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
 | |
|      DK(KP866025403, +0.866025403784438646763723170752936183471402627);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(12, rs)) {
 | |
| 	       E T7, TS, Tv, TO, Tt, TJ, Tx, TF, Ti, TI, Tw, TC;
 | |
| 	       {
 | |
| 		    E T1, TN, T6, TM;
 | |
| 		    T1 = ri[0];
 | |
| 		    TN = ii[0];
 | |
| 		    {
 | |
| 			 E T3, T5, T2, T4;
 | |
| 			 T3 = ri[WS(rs, 3)];
 | |
| 			 T5 = ii[WS(rs, 3)];
 | |
| 			 T2 = W[4];
 | |
| 			 T4 = W[5];
 | |
| 			 T6 = FMA(T2, T3, T4 * T5);
 | |
| 			 TM = FNMS(T4, T3, T2 * T5);
 | |
| 		    }
 | |
| 		    T7 = T1 - T6;
 | |
| 		    TS = TN - TM;
 | |
| 		    Tv = T1 + T6;
 | |
| 		    TO = TM + TN;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tn, TD, Ts, TE;
 | |
| 		    {
 | |
| 			 E Tk, Tm, Tj, Tl;
 | |
| 			 Tk = ri[WS(rs, 4)];
 | |
| 			 Tm = ii[WS(rs, 4)];
 | |
| 			 Tj = W[6];
 | |
| 			 Tl = W[7];
 | |
| 			 Tn = FMA(Tj, Tk, Tl * Tm);
 | |
| 			 TD = FNMS(Tl, Tk, Tj * Tm);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E Tp, Tr, To, Tq;
 | |
| 			 Tp = ri[WS(rs, 1)];
 | |
| 			 Tr = ii[WS(rs, 1)];
 | |
| 			 To = W[0];
 | |
| 			 Tq = W[1];
 | |
| 			 Ts = FMA(To, Tp, Tq * Tr);
 | |
| 			 TE = FNMS(Tq, Tp, To * Tr);
 | |
| 		    }
 | |
| 		    Tt = Tn - Ts;
 | |
| 		    TJ = TD + TE;
 | |
| 		    Tx = Tn + Ts;
 | |
| 		    TF = TD - TE;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tc, TA, Th, TB;
 | |
| 		    {
 | |
| 			 E T9, Tb, T8, Ta;
 | |
| 			 T9 = ri[WS(rs, 2)];
 | |
| 			 Tb = ii[WS(rs, 2)];
 | |
| 			 T8 = W[2];
 | |
| 			 Ta = W[3];
 | |
| 			 Tc = FMA(T8, T9, Ta * Tb);
 | |
| 			 TA = FNMS(Ta, T9, T8 * Tb);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E Te, Tg, Td, Tf;
 | |
| 			 Te = ri[WS(rs, 5)];
 | |
| 			 Tg = ii[WS(rs, 5)];
 | |
| 			 Td = W[8];
 | |
| 			 Tf = W[9];
 | |
| 			 Th = FMA(Td, Te, Tf * Tg);
 | |
| 			 TB = FNMS(Tf, Te, Td * Tg);
 | |
| 		    }
 | |
| 		    Ti = Tc - Th;
 | |
| 		    TI = TA + TB;
 | |
| 		    Tw = Tc + Th;
 | |
| 		    TC = TA - TB;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TG, Tu, Tz, TR, TT, TU;
 | |
| 		    TG = KP866025403 * (TC - TF);
 | |
| 		    Tu = Ti + Tt;
 | |
| 		    Tz = FNMS(KP500000000, Tu, T7);
 | |
| 		    ri[WS(rs, 3)] = T7 + Tu;
 | |
| 		    ri[WS(rs, 1)] = Tz + TG;
 | |
| 		    ri[WS(rs, 5)] = Tz - TG;
 | |
| 		    TR = KP866025403 * (Tt - Ti);
 | |
| 		    TT = TC + TF;
 | |
| 		    TU = FNMS(KP500000000, TT, TS);
 | |
| 		    ii[WS(rs, 1)] = TR + TU;
 | |
| 		    ii[WS(rs, 3)] = TT + TS;
 | |
| 		    ii[WS(rs, 5)] = TU - TR;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TK, Ty, TH, TQ, TL, TP;
 | |
| 		    TK = KP866025403 * (TI - TJ);
 | |
| 		    Ty = Tw + Tx;
 | |
| 		    TH = FNMS(KP500000000, Ty, Tv);
 | |
| 		    ri[0] = Tv + Ty;
 | |
| 		    ri[WS(rs, 4)] = TH + TK;
 | |
| 		    ri[WS(rs, 2)] = TH - TK;
 | |
| 		    TQ = KP866025403 * (Tx - Tw);
 | |
| 		    TL = TI + TJ;
 | |
| 		    TP = FNMS(KP500000000, TL, TO);
 | |
| 		    ii[0] = TL + TO;
 | |
| 		    ii[WS(rs, 4)] = TQ + TP;
 | |
| 		    ii[WS(rs, 2)] = TP - TQ;
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      { TW_FULL, 0, 6 },
 | |
|      { TW_NEXT, 1, 0 }
 | |
| };
 | |
| 
 | |
| static const ct_desc desc = { 6, "t1_6", twinstr, &GENUS, { 32, 14, 14, 0 }, 0, 0, 0 };
 | |
| 
 | |
| void X(codelet_t1_6) (planner *p) {
 | |
|      X(kdft_dit_register) (p, t1_6, &desc);
 | |
| }
 | |
| #endif
 | 
