211 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			211 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* This file was automatically generated --- DO NOT EDIT */
 | |
| /* Generated on Tue Sep 14 10:44:24 EDT 2021 */
 | |
| 
 | |
| #include "dft/codelet-dft.h"
 | |
| 
 | |
| #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 6 -name n1_6 -include dft/scalar/n.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 36 FP additions, 12 FP multiplications,
 | |
|  * (or, 24 additions, 0 multiplications, 12 fused multiply/add),
 | |
|  * 23 stack variables, 2 constants, and 24 memory accesses
 | |
|  */
 | |
| #include "dft/scalar/n.h"
 | |
| 
 | |
| static void n1_6(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
 | |
| {
 | |
|      DK(KP866025403, +0.866025403784438646763723170752936183471402627);
 | |
|      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
 | |
|      {
 | |
| 	  INT i;
 | |
| 	  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
 | |
| 	       E T3, Tb, Tp, Tx, T6, Tc, T9, Td, Ta, Te, Ti, Tu, Tl, Tv, Tq;
 | |
| 	       E Ty;
 | |
| 	       {
 | |
| 		    E T1, T2, Tn, To;
 | |
| 		    T1 = ri[0];
 | |
| 		    T2 = ri[WS(is, 3)];
 | |
| 		    T3 = T1 - T2;
 | |
| 		    Tb = T1 + T2;
 | |
| 		    Tn = ii[0];
 | |
| 		    To = ii[WS(is, 3)];
 | |
| 		    Tp = Tn - To;
 | |
| 		    Tx = Tn + To;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T4, T5, T7, T8;
 | |
| 		    T4 = ri[WS(is, 2)];
 | |
| 		    T5 = ri[WS(is, 5)];
 | |
| 		    T6 = T4 - T5;
 | |
| 		    Tc = T4 + T5;
 | |
| 		    T7 = ri[WS(is, 4)];
 | |
| 		    T8 = ri[WS(is, 1)];
 | |
| 		    T9 = T7 - T8;
 | |
| 		    Td = T7 + T8;
 | |
| 	       }
 | |
| 	       Ta = T6 + T9;
 | |
| 	       Te = Tc + Td;
 | |
| 	       {
 | |
| 		    E Tg, Th, Tj, Tk;
 | |
| 		    Tg = ii[WS(is, 2)];
 | |
| 		    Th = ii[WS(is, 5)];
 | |
| 		    Ti = Tg - Th;
 | |
| 		    Tu = Tg + Th;
 | |
| 		    Tj = ii[WS(is, 4)];
 | |
| 		    Tk = ii[WS(is, 1)];
 | |
| 		    Tl = Tj - Tk;
 | |
| 		    Tv = Tj + Tk;
 | |
| 	       }
 | |
| 	       Tq = Ti + Tl;
 | |
| 	       Ty = Tu + Tv;
 | |
| 	       ro[WS(os, 3)] = T3 + Ta;
 | |
| 	       io[WS(os, 3)] = Tp + Tq;
 | |
| 	       ro[0] = Tb + Te;
 | |
| 	       io[0] = Tx + Ty;
 | |
| 	       {
 | |
| 		    E Tf, Tm, Tr, Ts;
 | |
| 		    Tf = FNMS(KP500000000, Ta, T3);
 | |
| 		    Tm = Ti - Tl;
 | |
| 		    ro[WS(os, 5)] = FNMS(KP866025403, Tm, Tf);
 | |
| 		    ro[WS(os, 1)] = FMA(KP866025403, Tm, Tf);
 | |
| 		    Tr = FNMS(KP500000000, Tq, Tp);
 | |
| 		    Ts = T9 - T6;
 | |
| 		    io[WS(os, 1)] = FMA(KP866025403, Ts, Tr);
 | |
| 		    io[WS(os, 5)] = FNMS(KP866025403, Ts, Tr);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tt, Tw, Tz, TA;
 | |
| 		    Tt = FNMS(KP500000000, Te, Tb);
 | |
| 		    Tw = Tu - Tv;
 | |
| 		    ro[WS(os, 2)] = FNMS(KP866025403, Tw, Tt);
 | |
| 		    ro[WS(os, 4)] = FMA(KP866025403, Tw, Tt);
 | |
| 		    Tz = FNMS(KP500000000, Ty, Tx);
 | |
| 		    TA = Td - Tc;
 | |
| 		    io[WS(os, 2)] = FNMS(KP866025403, TA, Tz);
 | |
| 		    io[WS(os, 4)] = FMA(KP866025403, TA, Tz);
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const kdft_desc desc = { 6, "n1_6", { 24, 0, 12, 0 }, &GENUS, 0, 0, 0, 0 };
 | |
| 
 | |
| void X(codelet_n1_6) (planner *p) { X(kdft_register) (p, n1_6, &desc);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 6 -name n1_6 -include dft/scalar/n.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 36 FP additions, 8 FP multiplications,
 | |
|  * (or, 32 additions, 4 multiplications, 4 fused multiply/add),
 | |
|  * 23 stack variables, 2 constants, and 24 memory accesses
 | |
|  */
 | |
| #include "dft/scalar/n.h"
 | |
| 
 | |
| static void n1_6(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
 | |
| {
 | |
|      DK(KP866025403, +0.866025403784438646763723170752936183471402627);
 | |
|      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
 | |
|      {
 | |
| 	  INT i;
 | |
| 	  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(24, is), MAKE_VOLATILE_STRIDE(24, os)) {
 | |
| 	       E T3, Tb, Tq, Tx, T6, Tc, T9, Td, Ta, Te, Ti, Tu, Tl, Tv, Tr;
 | |
| 	       E Ty;
 | |
| 	       {
 | |
| 		    E T1, T2, To, Tp;
 | |
| 		    T1 = ri[0];
 | |
| 		    T2 = ri[WS(is, 3)];
 | |
| 		    T3 = T1 - T2;
 | |
| 		    Tb = T1 + T2;
 | |
| 		    To = ii[0];
 | |
| 		    Tp = ii[WS(is, 3)];
 | |
| 		    Tq = To - Tp;
 | |
| 		    Tx = To + Tp;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T4, T5, T7, T8;
 | |
| 		    T4 = ri[WS(is, 2)];
 | |
| 		    T5 = ri[WS(is, 5)];
 | |
| 		    T6 = T4 - T5;
 | |
| 		    Tc = T4 + T5;
 | |
| 		    T7 = ri[WS(is, 4)];
 | |
| 		    T8 = ri[WS(is, 1)];
 | |
| 		    T9 = T7 - T8;
 | |
| 		    Td = T7 + T8;
 | |
| 	       }
 | |
| 	       Ta = T6 + T9;
 | |
| 	       Te = Tc + Td;
 | |
| 	       {
 | |
| 		    E Tg, Th, Tj, Tk;
 | |
| 		    Tg = ii[WS(is, 2)];
 | |
| 		    Th = ii[WS(is, 5)];
 | |
| 		    Ti = Tg - Th;
 | |
| 		    Tu = Tg + Th;
 | |
| 		    Tj = ii[WS(is, 4)];
 | |
| 		    Tk = ii[WS(is, 1)];
 | |
| 		    Tl = Tj - Tk;
 | |
| 		    Tv = Tj + Tk;
 | |
| 	       }
 | |
| 	       Tr = Ti + Tl;
 | |
| 	       Ty = Tu + Tv;
 | |
| 	       ro[WS(os, 3)] = T3 + Ta;
 | |
| 	       io[WS(os, 3)] = Tq + Tr;
 | |
| 	       ro[0] = Tb + Te;
 | |
| 	       io[0] = Tx + Ty;
 | |
| 	       {
 | |
| 		    E Tf, Tm, Tn, Ts;
 | |
| 		    Tf = FNMS(KP500000000, Ta, T3);
 | |
| 		    Tm = KP866025403 * (Ti - Tl);
 | |
| 		    ro[WS(os, 5)] = Tf - Tm;
 | |
| 		    ro[WS(os, 1)] = Tf + Tm;
 | |
| 		    Tn = KP866025403 * (T9 - T6);
 | |
| 		    Ts = FNMS(KP500000000, Tr, Tq);
 | |
| 		    io[WS(os, 1)] = Tn + Ts;
 | |
| 		    io[WS(os, 5)] = Ts - Tn;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tt, Tw, Tz, TA;
 | |
| 		    Tt = FNMS(KP500000000, Te, Tb);
 | |
| 		    Tw = KP866025403 * (Tu - Tv);
 | |
| 		    ro[WS(os, 2)] = Tt - Tw;
 | |
| 		    ro[WS(os, 4)] = Tt + Tw;
 | |
| 		    Tz = FNMS(KP500000000, Ty, Tx);
 | |
| 		    TA = KP866025403 * (Td - Tc);
 | |
| 		    io[WS(os, 2)] = Tz - TA;
 | |
| 		    io[WS(os, 4)] = TA + Tz;
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const kdft_desc desc = { 6, "n1_6", { 32, 4, 4, 0 }, &GENUS, 0, 0, 0, 0 };
 | |
| 
 | |
| void X(codelet_n1_6) (planner *p) { X(kdft_register) (p, n1_6, &desc);
 | |
| }
 | |
| 
 | |
| #endif
 | 
