furnace/src/engine/platform/fds.cpp
tildearrow c009cb3536 dev112 - prepare for advanced arp macro
this new advanced arp macro offers more flexibility and reduces code duplication
it allows you to set each step of the macro to either relative or fixed mode
(instead of just one mode for the entire macro)

the UI is still a work in progress and doesn't work well

this change is big and may break things! further fixes incoming
2022-08-22 15:59:45 -05:00

520 lines
14 KiB
C++

/**
* Furnace Tracker - multi-system chiptune tracker
* Copyright (C) 2021-2022 tildearrow and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "fds.h"
#include "sound/nes/cpu_inline.h"
#include "../engine.h"
#include "sound/nes_nsfplay/nes_fds.h"
#include <math.h>
#define CHIP_FREQBASE 262144
#define rWrite(a,v) if (!skipRegisterWrites) {doWrite(a,v); regPool[(a)&0x7f]=v; if (dumpWrites) {addWrite(a,v);} }
const char* regCheatSheetFDS[]={
"IOCtrl", "4023",
"Wave", "4040",
"Volume", "4080",
"FreqL", "4082",
"FreqH", "4083",
"ModCtrl", "4084",
"ModCount", "4085",
"ModFreqL", "4086",
"ModFreqH", "4087",
"ModWrite", "4088",
"WaveCtrl", "4089",
"EnvSpeed", "408A",
"ReadVol", "4090",
"ReadPos", "4091",
"ReadModV", "4092",
"ReadModP", "4093",
"ReadModCG", "4094",
"ReadModInc", "4095",
"ReadWave", "4096",
"ReadModCount", "4097",
NULL
};
const char** DivPlatformFDS::getRegisterSheet() {
return regCheatSheetFDS;
}
void DivPlatformFDS::acquire_puNES(short* bufL, short* bufR, size_t start, size_t len) {
for (size_t i=start; i<start+len; i++) {
extcl_apu_tick_FDS(fds);
int sample=isMuted[0]?0:fds->snd.main.output;
if (sample>32767) sample=32767;
if (sample<-32768) sample=-32768;
bufL[i]=sample;
if (++writeOscBuf>=32) {
writeOscBuf=0;
oscBuf->data[oscBuf->needle++]=sample<<1;
}
}
}
void DivPlatformFDS::acquire_NSFPlay(short* bufL, short* bufR, size_t start, size_t len) {
int out[2];
for (size_t i=start; i<start+len; i++) {
fds_NP->Tick(1);
fds_NP->Render(out);
int sample=isMuted[0]?0:(out[0]<<1);
if (sample>32767) sample=32767;
if (sample<-32768) sample=-32768;
bufL[i]=sample;
if (++writeOscBuf>=32) {
writeOscBuf=0;
oscBuf->data[oscBuf->needle++]=sample<<1;
}
}
}
void DivPlatformFDS::doWrite(unsigned short addr, unsigned char data) {
if (useNP) {
fds_NP->Write(addr,data);
} else {
fds_wr_mem(fds,addr,data);
}
}
void DivPlatformFDS::acquire(short* bufL, short* bufR, size_t start, size_t len) {
if (useNP) {
acquire_NSFPlay(bufL,bufR,start,len);
} else {
acquire_puNES(bufL,bufR,start,len);
}
}
void DivPlatformFDS::updateWave() {
// TODO: master volume
rWrite(0x4089,0x80);
for (int i=0; i<64; i++) {
rWrite(0x4040+i,ws.output[i]);
}
rWrite(0x4089,0);
}
void DivPlatformFDS::tick(bool sysTick) {
for (int i=0; i<1; i++) {
chan[i].std.next();
if (chan[i].std.vol.had) {
// ok, why are the volumes like that?
chan[i].outVol=VOL_SCALE_LINEAR_BROKEN(chan[i].vol,chan[i].std.vol.val,32);
if (chan[i].outVol<0) chan[i].outVol=0;
rWrite(0x4080,0x80|chan[i].outVol);
}
if (chan[i].std.arp.had) {
if (!chan[i].inPorta) {
chan[i].baseFreq=NOTE_FREQUENCY(parent->calcArp(chan[i].note,chan[i].std.arp.val));
}
chan[i].freqChanged=true;
}
/*
if (chan[i].std.duty.had) {
chan[i].duty=chan[i].std.duty.val;
if (i==3) {
if (parent->song.properNoiseLayout) {
chan[i].duty&=1;
} else if (chan[i].duty>1) {
chan[i].duty=1;
}
}
if (i!=2) {
rWrite(0x4000+i*4,0x30|chan[i].outVol|((chan[i].duty&3)<<6));
}
if (i==3) { // noise
chan[i].freqChanged=true;
}
}*/
if (chan[i].std.wave.had) {
if (chan[i].wave!=chan[i].std.wave.val || ws.activeChanged()) {
chan[i].wave=chan[i].std.wave.val;
ws.changeWave1(chan[i].wave);
//if (!chan[i].keyOff) chan[i].keyOn=true;
}
}
if (chan[i].std.pitch.had) {
if (chan[i].std.pitch.mode) {
chan[i].pitch2+=chan[i].std.pitch.val;
CLAMP_VAR(chan[i].pitch2,-32768,32767);
} else {
chan[i].pitch2=chan[i].std.pitch.val;
}
chan[i].freqChanged=true;
}
if (chan[i].active) {
if (ws.tick()) {
updateWave();
if (!chan[i].keyOff) chan[i].keyOn=true;
}
}
if (chan[i].std.ex1.had) { // mod depth
chan[i].modOn=chan[i].std.ex1.val;
chan[i].modDepth=chan[i].std.ex1.val;
rWrite(0x4084,(chan[i].modOn<<7)|0x40|chan[i].modDepth);
}
if (chan[i].std.ex2.had) { // mod speed
chan[i].modFreq=chan[i].std.ex2.val;
rWrite(0x4086,chan[i].modFreq&0xff);
rWrite(0x4087,chan[i].modFreq>>8);
}
if (chan[i].std.ex3.had) { // mod position
chan[i].modPos=chan[i].std.ex3.val;
rWrite(0x4087,0x80|chan[i].modFreq>>8);
rWrite(0x4085,chan[i].modPos);
rWrite(0x4087,chan[i].modFreq>>8);
}
if (chan[i].sweepChanged) {
chan[i].sweepChanged=false;
if (i==0) {
//rWrite(16+i*5,chan[i].sweep);
}
}
if (chan[i].freqChanged || chan[i].keyOn || chan[i].keyOff) {
chan[i].freq=parent->calcFreq(chan[i].baseFreq,chan[i].pitch,false,2,chan[i].pitch2,chipClock,CHIP_FREQBASE);
if (chan[i].freq>4095) chan[i].freq=4095;
if (chan[i].freq<0) chan[i].freq=0;
if (chan[i].keyOn) {
// ???
}
if (chan[i].keyOff) {
rWrite(0x4080,0x80);
}
rWrite(0x4082,chan[i].freq&0xff);
rWrite(0x4083,(chan[i].freq>>8)&15);
if (chan[i].keyOn) chan[i].keyOn=false;
if (chan[i].keyOff) chan[i].keyOff=false;
chan[i].freqChanged=false;
}
}
}
int DivPlatformFDS::dispatch(DivCommand c) {
switch (c.cmd) {
case DIV_CMD_NOTE_ON: {
DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_FDS);
if (c.value!=DIV_NOTE_NULL) {
chan[c.chan].baseFreq=NOTE_FREQUENCY(c.value);
chan[c.chan].freqChanged=true;
chan[c.chan].note=c.value;
}
if (chan[c.chan].insChanged) {
if (ins->fds.initModTableWithFirstWave) { // compatible
if (chan[c.chan].wave==-1) {
DivWavetable* wt=parent->getWave(0);
for (int i=0; i<32; i++) {
if (wt->max<1 || wt->len<1) {
chan[c.chan].modTable[i]=0;
} else {
int data=wt->data[i*MIN(32,wt->len)/32]*7/wt->max;
if (data<0) data=0;
if (data>7) data=7;
chan[c.chan].modTable[i]=data;
}
}
rWrite(0x4087,0x80|chan[c.chan].modFreq>>8);
for (int i=0; i<32; i++) {
rWrite(0x4088,chan[c.chan].modTable[i]);
}
rWrite(0x4087,chan[c.chan].modFreq>>8);
}
} else { // The Familiar Way
chan[c.chan].modDepth=ins->fds.modDepth;
chan[c.chan].modOn=ins->fds.modDepth;
chan[c.chan].modFreq=ins->fds.modSpeed;
rWrite(0x4084,(chan[c.chan].modOn<<7)|0x40|chan[c.chan].modDepth);
rWrite(0x4086,chan[c.chan].modFreq&0xff);
rWrite(0x4087,0x80|chan[c.chan].modFreq>>8);
for (int i=0; i<32; i++) {
chan[c.chan].modTable[i]=ins->fds.modTable[i]&7;
rWrite(0x4088,chan[c.chan].modTable[i]);
}
rWrite(0x4087,chan[c.chan].modFreq>>8);
}
}
chan[c.chan].active=true;
chan[c.chan].keyOn=true;
chan[c.chan].macroInit(ins);
if (!parent->song.brokenOutVol && !chan[c.chan].std.vol.will) {
chan[c.chan].outVol=chan[c.chan].vol;
}
if (chan[c.chan].wave<0) {
chan[c.chan].wave=0;
ws.changeWave1(chan[c.chan].wave);
}
ws.init(ins,64,63,chan[c.chan].insChanged);
rWrite(0x4080,0x80|chan[c.chan].vol);
chan[c.chan].insChanged=false;
break;
}
case DIV_CMD_NOTE_OFF:
chan[c.chan].active=false;
chan[c.chan].keyOff=true;
chan[c.chan].macroInit(NULL);
break;
case DIV_CMD_NOTE_OFF_ENV:
case DIV_CMD_ENV_RELEASE:
chan[c.chan].std.release();
break;
case DIV_CMD_INSTRUMENT:
if (chan[c.chan].ins!=c.value || c.value2==1) {
chan[c.chan].ins=c.value;
chan[c.chan].insChanged=true;
}
break;
case DIV_CMD_VOLUME:
if (chan[c.chan].vol!=c.value) {
chan[c.chan].vol=c.value;
if (!chan[c.chan].std.vol.has) {
chan[c.chan].outVol=c.value;
}
rWrite(0x4080,0x80|chan[c.chan].vol);
}
break;
case DIV_CMD_GET_VOLUME:
return chan[c.chan].vol;
break;
case DIV_CMD_PITCH:
chan[c.chan].pitch=c.value;
chan[c.chan].freqChanged=true;
break;
case DIV_CMD_WAVE:
if (chan[c.chan].wave!=c.value) {
chan[c.chan].wave=c.value;
ws.changeWave1(chan[c.chan].wave);
}
break;
case DIV_CMD_FDS_MOD_DEPTH:
chan[c.chan].modDepth=c.value;
rWrite(0x4084,(chan[c.chan].modOn<<7)|0x40|chan[c.chan].modDepth);
break;
case DIV_CMD_FDS_MOD_HIGH:
chan[c.chan].modOn=c.value>>4;
chan[c.chan].modFreq=((c.value&15)<<8)|(chan[c.chan].modFreq&0xff);
rWrite(0x4084,(chan[c.chan].modOn<<7)|0x40|chan[c.chan].modDepth);
rWrite(0x4087,chan[c.chan].modFreq>>8);
break;
case DIV_CMD_FDS_MOD_LOW:
chan[c.chan].modFreq=(chan[c.chan].modFreq&0xf00)|c.value;
rWrite(0x4086,chan[c.chan].modFreq&0xff);
break;
case DIV_CMD_FDS_MOD_POS:
chan[c.chan].modPos=c.value&0x7f;
rWrite(0x4087,0x80|chan[c.chan].modFreq>>8);
rWrite(0x4085,chan[c.chan].modPos);
rWrite(0x4087,chan[c.chan].modFreq>>8);
break;
case DIV_CMD_FDS_MOD_WAVE: {
DivWavetable* wt=parent->getWave(c.value);
for (int i=0; i<32; i++) {
if (wt->max<1 || wt->len<1) {
rWrite(0x4040+i,0);
} else {
int data=wt->data[i*MIN(32,wt->len)/32]*7/wt->max;
if (data<0) data=0;
if (data>7) data=7;
chan[c.chan].modTable[i]=data;
}
}
rWrite(0x4087,0x80|chan[c.chan].modFreq>>8);
for (int i=0; i<32; i++) {
rWrite(0x4088,chan[c.chan].modTable[i]);
}
rWrite(0x4087,chan[c.chan].modFreq>>8);
break;
}
case DIV_CMD_NOTE_PORTA: {
int destFreq=NOTE_FREQUENCY(c.value2);
bool return2=false;
if (destFreq>chan[c.chan].baseFreq) {
chan[c.chan].baseFreq+=c.value;
if (chan[c.chan].baseFreq>=destFreq) {
chan[c.chan].baseFreq=destFreq;
return2=true;
}
} else {
chan[c.chan].baseFreq-=c.value;
if (chan[c.chan].baseFreq<=destFreq) {
chan[c.chan].baseFreq=destFreq;
return2=true;
}
}
chan[c.chan].freqChanged=true;
if (return2) {
chan[c.chan].inPorta=false;
return 2;
}
break;
}
case DIV_CMD_LEGATO:
if (c.chan==3) break;
chan[c.chan].baseFreq=NOTE_FREQUENCY(c.value+((chan[c.chan].std.arp.will && !chan[c.chan].std.arp.mode)?(chan[c.chan].std.arp.val):(0)));
chan[c.chan].freqChanged=true;
chan[c.chan].note=c.value;
break;
case DIV_CMD_PRE_PORTA:
if (chan[c.chan].active && c.value2) {
if (parent->song.resetMacroOnPorta) chan[c.chan].macroInit(parent->getIns(chan[c.chan].ins,DIV_INS_FDS));
}
if (!chan[c.chan].inPorta && c.value && !parent->song.brokenPortaArp && chan[c.chan].std.arp.will) chan[c.chan].baseFreq=NOTE_FREQUENCY(chan[c.chan].note);
chan[c.chan].inPorta=c.value;
break;
case DIV_CMD_GET_VOLMAX:
return 32;
break;
case DIV_ALWAYS_SET_VOLUME:
return 1;
break;
default:
break;
}
return 1;
}
void DivPlatformFDS::muteChannel(int ch, bool mute) {
isMuted[ch]=mute;
}
void DivPlatformFDS::forceIns() {
for (int i=0; i<1; i++) {
chan[i].insChanged=true;
chan[i].prevFreq=65535;
}
updateWave();
}
void* DivPlatformFDS::getChanState(int ch) {
return &chan[ch];
}
DivMacroInt* DivPlatformFDS::getChanMacroInt(int ch) {
return &chan[ch].std;
}
DivDispatchOscBuffer* DivPlatformFDS::getOscBuffer(int ch) {
return oscBuf;
}
unsigned char* DivPlatformFDS::getRegisterPool() {
return regPool;
}
int DivPlatformFDS::getRegisterPoolSize() {
return 128;
}
void DivPlatformFDS::reset() {
for (int i=0; i<1; i++) {
chan[i]=DivPlatformFDS::Channel();
chan[i].std.setEngine(parent);
}
ws.setEngine(parent);
ws.init(NULL,64,63,false);
if (dumpWrites) {
addWrite(0xffffffff,0);
}
if (useNP) {
fds_NP->Reset();
} else {
fds_reset(fds);
}
memset(regPool,0,128);
rWrite(0x4023,0);
rWrite(0x4023,0x83);
rWrite(0x4089,0);
}
bool DivPlatformFDS::keyOffAffectsArp(int ch) {
return true;
}
void DivPlatformFDS::setNSFPlay(bool use) {
useNP=use;
}
void DivPlatformFDS::setFlags(unsigned int flags) {
if (flags==2) { // Dendy
rate=COLOR_PAL*2.0/5.0;
} else if (flags==1) { // PAL
rate=COLOR_PAL*3.0/8.0;
} else { // NTSC
rate=COLOR_NTSC/2.0;
}
chipClock=rate;
oscBuf->rate=rate/32;
if (useNP) {
fds_NP->SetClock(rate);
fds_NP->SetRate(rate);
}
}
void DivPlatformFDS::notifyInsDeletion(void* ins) {
for (int i=0; i<1; i++) {
chan[i].std.notifyInsDeletion((DivInstrument*)ins);
}
}
float DivPlatformFDS::getPostAmp() {
return useNP?2.0f:1.0f;
}
void DivPlatformFDS::poke(unsigned int addr, unsigned short val) {
rWrite(addr,val);
}
void DivPlatformFDS::poke(std::vector<DivRegWrite>& wlist) {
for (DivRegWrite& i: wlist) rWrite(i.addr,i.val);
}
int DivPlatformFDS::init(DivEngine* p, int channels, int sugRate, unsigned int flags) {
parent=p;
apuType=flags;
dumpWrites=false;
skipRegisterWrites=false;
writeOscBuf=0;
if (useNP) {
fds_NP=new xgm::NES_FDS;
} else {
fds=new struct _fds;
}
oscBuf=new DivDispatchOscBuffer;
for (int i=0; i<1; i++) {
isMuted[i]=false;
}
setFlags(flags);
reset();
return 1;
}
void DivPlatformFDS::quit() {
delete oscBuf;
if (useNP) {
delete fds_NP;
} else {
delete fds;
}
}
DivPlatformFDS::~DivPlatformFDS() {
}