213 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			213 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include "kernel/ifftw.h"
 | |
| 
 | |
| /***************************************************************************/
 | |
| 
 | |
| /* Rader's algorithm requires lots of modular arithmetic, and if we
 | |
|    aren't careful we can have errors due to integer overflows. */
 | |
| 
 | |
| /* Compute (x * y) mod p, but watch out for integer overflows; we must
 | |
|    have 0 <= {x, y} < p.
 | |
| 
 | |
|    If overflow is common, this routine is somewhat slower than
 | |
|    e.g. using 'long long' arithmetic.  However, it has the advantage
 | |
|    of working when INT is 64 bits, and is also faster when overflow is
 | |
|    rare.  FFTW calls this via the MULMOD macro, which further
 | |
|    optimizes for the case of small integers. 
 | |
| */
 | |
| 
 | |
| #define ADD_MOD(x, y, p) ((x) >= (p) - (y)) ? ((x) + ((y) - (p))) : ((x) + (y))
 | |
| 
 | |
| INT X(safe_mulmod)(INT x, INT y, INT p)
 | |
| {
 | |
|      INT r;
 | |
| 
 | |
|      if (y > x) 
 | |
| 	  return X(safe_mulmod)(y, x, p);
 | |
| 
 | |
|      A(0 <= y && x < p);
 | |
| 
 | |
|      r = 0;
 | |
|      while (y) {
 | |
| 	  r = ADD_MOD(r, x*(y&1), p); y >>= 1;
 | |
| 	  x = ADD_MOD(x, x, p);
 | |
|      }
 | |
| 
 | |
|      return r;
 | |
| }
 | |
| 
 | |
| /***************************************************************************/
 | |
| 
 | |
| /* Compute n^m mod p, where m >= 0 and p > 0.  If we really cared, we
 | |
|    could make this tail-recursive. */
 | |
| 
 | |
| INT X(power_mod)(INT n, INT m, INT p)
 | |
| {
 | |
|      A(p > 0);
 | |
|      if (m == 0)
 | |
| 	  return 1;
 | |
|      else if (m % 2 == 0) {
 | |
| 	  INT x = X(power_mod)(n, m / 2, p);
 | |
| 	  return MULMOD(x, x, p);
 | |
|      }
 | |
|      else
 | |
| 	  return MULMOD(n, X(power_mod)(n, m - 1, p), p);
 | |
| }
 | |
| 
 | |
| /* the following two routines were contributed by Greg Dionne. */
 | |
| static INT get_prime_factors(INT n, INT *primef)
 | |
| {
 | |
|      INT i;
 | |
|      INT size = 0;
 | |
| 
 | |
|      A(n % 2 == 0); /* this routine is designed only for even n */
 | |
|      primef[size++] = (INT)2;
 | |
|      do {
 | |
| 	  n >>= 1;
 | |
|      } while ((n & 1) == 0);
 | |
| 
 | |
|      if (n == 1)
 | |
| 	  return size;
 | |
| 
 | |
|      for (i = 3; i * i <= n; i += 2)
 | |
| 	  if (!(n % i)) {
 | |
| 	       primef[size++] = i;
 | |
| 	       do {
 | |
| 		    n /= i;
 | |
| 	       } while (!(n % i));
 | |
| 	  }
 | |
|      if (n == 1)
 | |
| 	  return size;
 | |
|      primef[size++] = n;
 | |
|      return size;
 | |
| }
 | |
| 
 | |
| INT X(find_generator)(INT p)
 | |
| {
 | |
|     INT n, i, size;
 | |
|     INT primef[16];     /* smallest number = 32589158477190044730 > 2^64 */
 | |
|     INT pm1 = p - 1;
 | |
| 
 | |
|     if (p == 2)
 | |
| 	 return 1;
 | |
| 
 | |
|     size = get_prime_factors(pm1, primef);
 | |
|     n = 2;
 | |
|     for (i = 0; i < size; i++)
 | |
|         if (X(power_mod)(n, pm1 / primef[i], p) == 1) {
 | |
|             i = -1;
 | |
|             n++;
 | |
|         }
 | |
|     return n;
 | |
| }
 | |
| 
 | |
| /* Return first prime divisor of n  (It would be at best slightly faster to
 | |
|    search a static table of primes; there are 6542 primes < 2^16.)  */
 | |
| INT X(first_divisor)(INT n)
 | |
| {
 | |
|      INT i;
 | |
|      if (n <= 1)
 | |
| 	  return n;
 | |
|      if (n % 2 == 0)
 | |
| 	  return 2;
 | |
|      for (i = 3; i*i <= n; i += 2)
 | |
| 	  if (n % i == 0)
 | |
| 	       return i;
 | |
|      return n;
 | |
| }
 | |
| 
 | |
| int X(is_prime)(INT n)
 | |
| {
 | |
|      return(n > 1 && X(first_divisor)(n) == n);
 | |
| }
 | |
| 
 | |
| INT X(next_prime)(INT n)
 | |
| {
 | |
|      while (!X(is_prime)(n)) ++n;
 | |
|      return n;
 | |
| }
 | |
| 
 | |
| int X(factors_into)(INT n, const INT *primes)
 | |
| {
 | |
|      for (; *primes != 0; ++primes) 
 | |
| 	  while ((n % *primes) == 0) 
 | |
| 	       n /= *primes;
 | |
|      return (n == 1);
 | |
| }
 | |
| 
 | |
| /* integer square root.  Return floor(sqrt(N)) */
 | |
| INT X(isqrt)(INT n)
 | |
| {
 | |
|      INT guess, iguess;
 | |
| 
 | |
|      A(n >= 0);
 | |
|      if (n == 0) return 0;
 | |
| 
 | |
|      guess = n; iguess = 1;
 | |
| 
 | |
|      do {
 | |
|           guess = (guess + iguess) / 2;
 | |
| 	  iguess = n / guess;
 | |
|      } while (guess > iguess);
 | |
| 
 | |
|      return guess;
 | |
| }
 | |
| 
 | |
| static INT isqrt_maybe(INT n)
 | |
| {
 | |
|      INT guess = X(isqrt)(n);
 | |
|      return guess * guess == n ? guess : 0;
 | |
| }
 | |
| 
 | |
| #define divides(a, b) (((b) % (a)) == 0)
 | |
| INT X(choose_radix)(INT r, INT n)
 | |
| {
 | |
|      if (r > 0) {
 | |
| 	  if (divides(r, n)) return r;
 | |
| 	  return 0;
 | |
|      } else if (r == 0) {
 | |
| 	  return X(first_divisor)(n);
 | |
|      } else {
 | |
| 	  /* r is negative.  If n = (-r) * q^2, take q as the radix */
 | |
| 	  r = 0 - r;
 | |
| 	  return (n > r && divides(r, n)) ? isqrt_maybe(n / r) : 0;
 | |
|      }
 | |
| }
 | |
| 
 | |
| /* return A mod N, works for all A including A < 0 */
 | |
| INT X(modulo)(INT a, INT n)
 | |
| {
 | |
|      A(n > 0);
 | |
|      if (a >= 0)
 | |
| 	  return a % n;
 | |
|      else
 | |
| 	  return (n - 1) - ((-(a + (INT)1)) % n);
 | |
| }
 | |
| 
 | |
| /* TRUE if N factors into small primes */
 | |
| int X(factors_into_small_primes)(INT n)
 | |
| {
 | |
|      static const INT primes[] = { 2, 3, 5, 0 };
 | |
|      return X(factors_into)(n, primes);
 | |
| }
 | 
