289 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
			
		
		
	
	
			289 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
(*
 | 
						|
 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
 | 
						|
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 | 
						|
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | 
						|
 *
 | 
						|
 *)
 | 
						|
 | 
						|
(*************************************************************
 | 
						|
 * Conversion of the dag to an assignment list
 | 
						|
 *************************************************************)
 | 
						|
(*
 | 
						|
 * This function is messy.  The main problem is that we want to
 | 
						|
 * inline dag nodes conditionally, depending on how many times they
 | 
						|
 * are used.  The Right Thing to do would be to modify the
 | 
						|
 * state monad to propagate some of the state backwards, so that
 | 
						|
 * we know whether a given node will be used again in the future.
 | 
						|
 * This modification is trivial in a lazy language, but it is
 | 
						|
 * messy in a strict language like ML.  
 | 
						|
 *
 | 
						|
 * In this implementation, we just do the obvious thing, i.e., visit
 | 
						|
 * the dag twice, the first to count the node usages, and the second to
 | 
						|
 * produce the output.
 | 
						|
 *)
 | 
						|
 | 
						|
open Monads.StateMonad
 | 
						|
open Monads.MemoMonad
 | 
						|
open Expr
 | 
						|
 | 
						|
let fresh = Variable.make_temporary
 | 
						|
let node_insert x =  Assoctable.insert Expr.hash x
 | 
						|
let node_lookup x =  Assoctable.lookup Expr.hash (==) x
 | 
						|
let empty = Assoctable.empty
 | 
						|
 | 
						|
let fetchAl = 
 | 
						|
  fetchState >>= (fun (al, _, _) -> returnM al)
 | 
						|
 | 
						|
let storeAl al =
 | 
						|
  fetchState >>= (fun (_, visited, visited') ->
 | 
						|
    storeState (al, visited, visited'))
 | 
						|
 | 
						|
let fetchVisited = fetchState >>= (fun (_, v, _) -> returnM v)
 | 
						|
 | 
						|
let storeVisited visited =
 | 
						|
  fetchState >>= (fun (al, _, visited') ->
 | 
						|
    storeState (al, visited, visited'))
 | 
						|
 | 
						|
let fetchVisited' = fetchState >>= (fun (_, _, v') -> returnM v')
 | 
						|
let storeVisited' visited' =
 | 
						|
  fetchState >>= (fun (al, visited, _) ->
 | 
						|
    storeState (al, visited, visited'))
 | 
						|
let lookupVisitedM' key =
 | 
						|
  fetchVisited' >>= fun table ->
 | 
						|
    returnM (node_lookup key table)
 | 
						|
let insertVisitedM' key value =
 | 
						|
  fetchVisited' >>= fun table ->
 | 
						|
    storeVisited' (node_insert key value table)
 | 
						|
 | 
						|
let counting f x =
 | 
						|
  fetchVisited >>= (fun v ->
 | 
						|
    match node_lookup x v with
 | 
						|
      Some count -> 
 | 
						|
	let incr_cnt = 
 | 
						|
	  fetchVisited >>= (fun v' ->
 | 
						|
	    storeVisited (node_insert x (count + 1) v'))
 | 
						|
	in
 | 
						|
	begin
 | 
						|
	  match x with
 | 
						|
	    (* Uminus is always inlined.  Visit child *)
 | 
						|
	    Uminus y -> f y >> incr_cnt
 | 
						|
	  | _ -> incr_cnt
 | 
						|
	end
 | 
						|
    | None ->
 | 
						|
        f x >> fetchVisited >>= (fun v' ->
 | 
						|
            storeVisited (node_insert x 1 v')))
 | 
						|
 | 
						|
let with_varM v x = 
 | 
						|
  fetchAl >>= (fun al -> storeAl ((v, x) :: al)) >> returnM (Load v)
 | 
						|
 | 
						|
let inlineM = returnM
 | 
						|
 | 
						|
let with_tempM x = match x with
 | 
						|
| Load v when Variable.is_temporary v -> inlineM x (* avoid trivial moves *)
 | 
						|
|  _ -> with_varM (fresh ()) x
 | 
						|
 | 
						|
(* declare a temporary only if node is used more than once *)
 | 
						|
let with_temp_maybeM node x =
 | 
						|
  fetchVisited >>= (fun v ->
 | 
						|
    match node_lookup node v with
 | 
						|
      Some count -> 
 | 
						|
        if (count = 1 && !Magic.inline_single) then
 | 
						|
          inlineM x
 | 
						|
        else
 | 
						|
          with_tempM x
 | 
						|
    | None ->
 | 
						|
        failwith "with_temp_maybeM")
 | 
						|
type fma = 
 | 
						|
    NO_FMA
 | 
						|
  | FMA of expr * expr * expr   (* FMA (a, b, c) => a + b * c *)
 | 
						|
  | FMS of expr * expr * expr   (* FMS (a, b, c) => -a + b * c *)
 | 
						|
  | FNMS of expr * expr * expr  (* FNMS (a, b, c) => a - b * c *)
 | 
						|
 | 
						|
let good_for_fma (a, b) = 
 | 
						|
  let good = function
 | 
						|
    | NaN I -> true
 | 
						|
    | NaN CONJ -> true
 | 
						|
    | NaN _ -> false
 | 
						|
    | Times(NaN _, _) -> false
 | 
						|
    | Times(_, NaN _) -> false
 | 
						|
    | _ -> true
 | 
						|
  in good a && good b
 | 
						|
 | 
						|
let build_fma l = 
 | 
						|
  if (not !Magic.enable_fma) then NO_FMA
 | 
						|
  else match l with
 | 
						|
  | [a; Uminus (Times (b, c))] when good_for_fma (b, c) -> FNMS (a, b, c)
 | 
						|
  | [Uminus (Times (b, c)); a] when good_for_fma (b, c) -> FNMS (a, b, c)
 | 
						|
  | [Uminus a; Times (b, c)] when good_for_fma (b, c) -> FMS (a, b, c)
 | 
						|
  | [Times (b, c); Uminus a] when good_for_fma (b, c) -> FMS (a, b, c)
 | 
						|
  | [a; Times (b, c)] when good_for_fma (b, c) -> FMA (a, b, c)
 | 
						|
  | [Times (b, c); a] when good_for_fma (b, c) -> FMA (a, b, c)
 | 
						|
  | _ -> NO_FMA
 | 
						|
 | 
						|
let children_fma l = match build_fma l with
 | 
						|
| FMA (a, b, c) -> Some (a, b, c)
 | 
						|
| FMS (a, b, c) -> Some (a, b, c)
 | 
						|
| FNMS (a, b, c) -> Some (a, b, c)
 | 
						|
| NO_FMA -> None
 | 
						|
 | 
						|
 | 
						|
let rec visitM x =
 | 
						|
  counting (function
 | 
						|
    | Load v -> returnM ()
 | 
						|
    | Num a -> returnM ()
 | 
						|
    | NaN a -> returnM ()
 | 
						|
    | Store (v, x) -> visitM x
 | 
						|
    | Plus a -> (match children_fma a with
 | 
						|
	None -> mapM visitM a >> returnM ()
 | 
						|
      | Some (a, b, c) -> 
 | 
						|
          (* visit fma's arguments twice to make sure they are not inlined *)
 | 
						|
	  visitM a >> visitM a >>
 | 
						|
	  visitM b >> visitM b >>
 | 
						|
	  visitM c >> visitM c)
 | 
						|
    | Times (a, b) -> visitM a >> visitM b
 | 
						|
    | CTimes (a, b) -> visitM a >> visitM b
 | 
						|
    | CTimesJ (a, b) -> visitM a >> visitM b
 | 
						|
    | Uminus a -> visitM a)
 | 
						|
    x
 | 
						|
 | 
						|
let visit_rootsM = mapM visitM
 | 
						|
 | 
						|
 | 
						|
let rec expr_of_nodeM x =
 | 
						|
  memoizing lookupVisitedM' insertVisitedM'
 | 
						|
    (function x -> match x with
 | 
						|
    | Load v -> 
 | 
						|
	if (Variable.is_temporary v) then
 | 
						|
	  inlineM (Load v)
 | 
						|
	else if (Variable.is_locative v && !Magic.inline_loads) then
 | 
						|
          inlineM (Load v)
 | 
						|
        else if (Variable.is_constant v && !Magic.inline_loads_constants) then
 | 
						|
          inlineM (Load v)
 | 
						|
	else
 | 
						|
          with_tempM (Load v)
 | 
						|
    | Num a ->
 | 
						|
        if !Magic.inline_constants then
 | 
						|
          inlineM (Num a)
 | 
						|
	else
 | 
						|
          with_temp_maybeM x (Num a)
 | 
						|
    | NaN a -> inlineM (NaN a)
 | 
						|
    | Store (v, x) -> 
 | 
						|
        expr_of_nodeM x >>= 
 | 
						|
	(if !Magic.trivial_stores then with_tempM else inlineM) >>=
 | 
						|
        with_varM v 
 | 
						|
 | 
						|
    | Plus a -> 
 | 
						|
	begin
 | 
						|
	  match build_fma a with
 | 
						|
	    FMA (a, b, c) ->	  
 | 
						|
	      expr_of_nodeM a >>= fun a' ->
 | 
						|
		expr_of_nodeM b >>= fun b' ->
 | 
						|
		  expr_of_nodeM c >>= fun c' ->
 | 
						|
		    with_temp_maybeM x (Plus [a'; Times (b', c')])
 | 
						|
	  | FMS (a, b, c) ->	  
 | 
						|
	      expr_of_nodeM a >>= fun a' ->
 | 
						|
		expr_of_nodeM b >>= fun b' ->
 | 
						|
		  expr_of_nodeM c >>= fun c' ->
 | 
						|
		    with_temp_maybeM x 
 | 
						|
		      (Plus [Times (b', c'); Uminus a'])
 | 
						|
	  | FNMS (a, b, c) ->	  
 | 
						|
	      expr_of_nodeM a >>= fun a' ->
 | 
						|
		expr_of_nodeM b >>= fun b' ->
 | 
						|
		  expr_of_nodeM c >>= fun c' ->
 | 
						|
		    with_temp_maybeM x 
 | 
						|
		      (Plus [a'; Uminus (Times (b', c'))])
 | 
						|
	  | NO_FMA ->
 | 
						|
              mapM expr_of_nodeM a >>= fun a' ->
 | 
						|
		with_temp_maybeM x (Plus a')
 | 
						|
	end
 | 
						|
    | CTimes (Load _ as a, b) when !Magic.generate_bytw ->
 | 
						|
        expr_of_nodeM b >>= fun b' ->
 | 
						|
          with_tempM (CTimes (a, b'))
 | 
						|
    | CTimes (a, b) ->
 | 
						|
        expr_of_nodeM a >>= fun a' ->
 | 
						|
          expr_of_nodeM b >>= fun b' ->
 | 
						|
            with_tempM (CTimes (a', b'))
 | 
						|
    | CTimesJ (Load _ as a, b) when !Magic.generate_bytw ->
 | 
						|
        expr_of_nodeM b >>= fun b' ->
 | 
						|
          with_tempM (CTimesJ (a, b'))
 | 
						|
    | CTimesJ (a, b) ->
 | 
						|
        expr_of_nodeM a >>= fun a' ->
 | 
						|
          expr_of_nodeM b >>= fun b' ->
 | 
						|
            with_tempM (CTimesJ (a', b'))
 | 
						|
    | Times (a, b) ->
 | 
						|
        expr_of_nodeM a >>= fun a' ->
 | 
						|
          expr_of_nodeM b >>= fun b' ->
 | 
						|
	    begin
 | 
						|
	      match a' with
 | 
						|
		Num a'' when !Magic.strength_reduce_mul && Number.is_two a'' ->
 | 
						|
		  (inlineM b' >>= fun b'' ->
 | 
						|
		    with_temp_maybeM x (Plus [b''; b'']))
 | 
						|
	      | _ -> with_temp_maybeM x (Times (a', b'))
 | 
						|
	    end
 | 
						|
    | Uminus a ->
 | 
						|
        expr_of_nodeM a >>= fun a' ->
 | 
						|
          inlineM (Uminus a'))
 | 
						|
    x
 | 
						|
 | 
						|
let expr_of_rootsM = mapM expr_of_nodeM
 | 
						|
 | 
						|
let peek_alistM roots =
 | 
						|
  visit_rootsM roots >> expr_of_rootsM roots >> fetchAl
 | 
						|
 | 
						|
let wrap_assign (a, b) = Expr.Assign (a, b)
 | 
						|
 | 
						|
let to_assignments dag =
 | 
						|
  let () = Util.info "begin to_alist" in
 | 
						|
  let al = List.rev (runM ([], empty, empty) peek_alistM dag) in
 | 
						|
  let res = List.map wrap_assign al in
 | 
						|
  let () = Util.info "end to_alist" in
 | 
						|
  res
 | 
						|
 | 
						|
 | 
						|
(* dump alist in `dot' format *)
 | 
						|
let dump print alist =
 | 
						|
  let vs v = "\"" ^ (Variable.unparse v) ^ "\"" in
 | 
						|
  begin
 | 
						|
    print "digraph G {\n";
 | 
						|
    print "\tsize=\"6,6\";\n";
 | 
						|
 | 
						|
    (* all input nodes have the same rank *)
 | 
						|
    print "{ rank = same;\n";
 | 
						|
    List.iter (fun (Expr.Assign (v, x)) ->
 | 
						|
      List.iter (fun y -> 
 | 
						|
	if (Variable.is_locative y) then print("\t" ^ (vs y) ^ ";\n"))
 | 
						|
	(Expr.find_vars x))
 | 
						|
      alist;
 | 
						|
    print "}\n";
 | 
						|
 | 
						|
    (* all output nodes have the same rank *)
 | 
						|
    print "{ rank = same;\n";
 | 
						|
    List.iter (fun (Expr.Assign (v, x)) ->
 | 
						|
      if (Variable.is_locative v) then print("\t" ^ (vs v) ^ ";\n"))
 | 
						|
      alist;
 | 
						|
    print "}\n";
 | 
						|
    
 | 
						|
    (* edges *)
 | 
						|
    List.iter (fun (Expr.Assign (v, x)) ->
 | 
						|
      List.iter (fun y -> print("\t" ^ (vs y) ^ " -> " ^ (vs v) ^ ";\n"))
 | 
						|
	(Expr.find_vars x))
 | 
						|
      alist;
 | 
						|
 | 
						|
    print "}\n";
 | 
						|
  end
 | 
						|
 |