355 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			355 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* This file was automatically generated --- DO NOT EDIT */
 | |
| /* Generated on Tue Sep 14 10:46:12 EDT 2021 */
 | |
| 
 | |
| #include "rdft/codelet-rdft.h"
 | |
| 
 | |
| #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -n 7 -dit -name hf_7 -include rdft/scalar/hf.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 72 FP additions, 66 FP multiplications,
 | |
|  * (or, 18 additions, 12 multiplications, 54 fused multiply/add),
 | |
|  * 37 stack variables, 6 constants, and 28 memory accesses
 | |
|  */
 | |
| #include "rdft/scalar/hf.h"
 | |
| 
 | |
| static void hf_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DK(KP974927912, +0.974927912181823607018131682993931217232785801);
 | |
|      DK(KP900968867, +0.900968867902419126236102319507445051165919162);
 | |
|      DK(KP801937735, +0.801937735804838252472204639014890102331838324);
 | |
|      DK(KP554958132, +0.554958132087371191422194871006410481067288862);
 | |
|      DK(KP692021471, +0.692021471630095869627814897002069140197260599);
 | |
|      DK(KP356895867, +0.356895867892209443894399510021300583399127187);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) {
 | |
| 	       E T1, T19, Te, T1i, TR, T1a, Tr, T1h, TM, T1b, TE, T1g, TW, T1c;
 | |
| 	       T1 = cr[0];
 | |
| 	       T19 = ci[0];
 | |
| 	       {
 | |
| 		    E T3, T6, T4, TN, T9, Tc, Ta, TP, T2, T8;
 | |
| 		    T3 = cr[WS(rs, 1)];
 | |
| 		    T6 = ci[WS(rs, 1)];
 | |
| 		    T2 = W[0];
 | |
| 		    T4 = T2 * T3;
 | |
| 		    TN = T2 * T6;
 | |
| 		    T9 = cr[WS(rs, 6)];
 | |
| 		    Tc = ci[WS(rs, 6)];
 | |
| 		    T8 = W[10];
 | |
| 		    Ta = T8 * T9;
 | |
| 		    TP = T8 * Tc;
 | |
| 		    {
 | |
| 			 E T7, TO, Td, TQ, T5, Tb;
 | |
| 			 T5 = W[1];
 | |
| 			 T7 = FMA(T5, T6, T4);
 | |
| 			 TO = FNMS(T5, T3, TN);
 | |
| 			 Tb = W[11];
 | |
| 			 Td = FMA(Tb, Tc, Ta);
 | |
| 			 TQ = FNMS(Tb, T9, TP);
 | |
| 			 Te = T7 + Td;
 | |
| 			 T1i = Td - T7;
 | |
| 			 TR = TO - TQ;
 | |
| 			 T1a = TO + TQ;
 | |
| 		    }
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tg, Tj, Th, TI, Tm, Tp, Tn, TK, Tf, Tl;
 | |
| 		    Tg = cr[WS(rs, 2)];
 | |
| 		    Tj = ci[WS(rs, 2)];
 | |
| 		    Tf = W[2];
 | |
| 		    Th = Tf * Tg;
 | |
| 		    TI = Tf * Tj;
 | |
| 		    Tm = cr[WS(rs, 5)];
 | |
| 		    Tp = ci[WS(rs, 5)];
 | |
| 		    Tl = W[8];
 | |
| 		    Tn = Tl * Tm;
 | |
| 		    TK = Tl * Tp;
 | |
| 		    {
 | |
| 			 E Tk, TJ, Tq, TL, Ti, To;
 | |
| 			 Ti = W[3];
 | |
| 			 Tk = FMA(Ti, Tj, Th);
 | |
| 			 TJ = FNMS(Ti, Tg, TI);
 | |
| 			 To = W[9];
 | |
| 			 Tq = FMA(To, Tp, Tn);
 | |
| 			 TL = FNMS(To, Tm, TK);
 | |
| 			 Tr = Tk + Tq;
 | |
| 			 T1h = Tq - Tk;
 | |
| 			 TM = TJ - TL;
 | |
| 			 T1b = TJ + TL;
 | |
| 		    }
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tt, Tw, Tu, TS, Tz, TC, TA, TU, Ts, Ty;
 | |
| 		    Tt = cr[WS(rs, 3)];
 | |
| 		    Tw = ci[WS(rs, 3)];
 | |
| 		    Ts = W[4];
 | |
| 		    Tu = Ts * Tt;
 | |
| 		    TS = Ts * Tw;
 | |
| 		    Tz = cr[WS(rs, 4)];
 | |
| 		    TC = ci[WS(rs, 4)];
 | |
| 		    Ty = W[6];
 | |
| 		    TA = Ty * Tz;
 | |
| 		    TU = Ty * TC;
 | |
| 		    {
 | |
| 			 E Tx, TT, TD, TV, Tv, TB;
 | |
| 			 Tv = W[5];
 | |
| 			 Tx = FMA(Tv, Tw, Tu);
 | |
| 			 TT = FNMS(Tv, Tt, TS);
 | |
| 			 TB = W[7];
 | |
| 			 TD = FMA(TB, TC, TA);
 | |
| 			 TV = FNMS(TB, Tz, TU);
 | |
| 			 TE = Tx + TD;
 | |
| 			 T1g = TD - Tx;
 | |
| 			 TW = TT - TV;
 | |
| 			 T1c = TT + TV;
 | |
| 		    }
 | |
| 	       }
 | |
| 	       cr[0] = T1 + Te + Tr + TE;
 | |
| 	       {
 | |
| 		    E TG, TY, TF, TX, TH;
 | |
| 		    TF = FNMS(KP356895867, Tr, Te);
 | |
| 		    TG = FNMS(KP692021471, TF, TE);
 | |
| 		    TX = FMA(KP554958132, TW, TR);
 | |
| 		    TY = FMA(KP801937735, TX, TM);
 | |
| 		    TH = FNMS(KP900968867, TG, T1);
 | |
| 		    ci[0] = FNMS(KP974927912, TY, TH);
 | |
| 		    cr[WS(rs, 1)] = FMA(KP974927912, TY, TH);
 | |
| 	       }
 | |
| 	       ci[WS(rs, 6)] = T1a + T1b + T1c + T19;
 | |
| 	       {
 | |
| 		    E T1r, T1u, T1q, T1t, T1s;
 | |
| 		    T1q = FNMS(KP356895867, T1b, T1a);
 | |
| 		    T1r = FNMS(KP692021471, T1q, T1c);
 | |
| 		    T1t = FMA(KP554958132, T1g, T1i);
 | |
| 		    T1u = FMA(KP801937735, T1t, T1h);
 | |
| 		    T1s = FNMS(KP900968867, T1r, T19);
 | |
| 		    cr[WS(rs, 6)] = FMS(KP974927912, T1u, T1s);
 | |
| 		    ci[WS(rs, 5)] = FMA(KP974927912, T1u, T1s);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T1m, T1p, T1l, T1o, T1n;
 | |
| 		    T1l = FNMS(KP356895867, T1a, T1c);
 | |
| 		    T1m = FNMS(KP692021471, T1l, T1b);
 | |
| 		    T1o = FMA(KP554958132, T1h, T1g);
 | |
| 		    T1p = FNMS(KP801937735, T1o, T1i);
 | |
| 		    T1n = FNMS(KP900968867, T1m, T19);
 | |
| 		    cr[WS(rs, 5)] = FMS(KP974927912, T1p, T1n);
 | |
| 		    ci[WS(rs, 4)] = FMA(KP974927912, T1p, T1n);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T1e, T1k, T1d, T1j, T1f;
 | |
| 		    T1d = FNMS(KP356895867, T1c, T1b);
 | |
| 		    T1e = FNMS(KP692021471, T1d, T1a);
 | |
| 		    T1j = FNMS(KP554958132, T1i, T1h);
 | |
| 		    T1k = FNMS(KP801937735, T1j, T1g);
 | |
| 		    T1f = FNMS(KP900968867, T1e, T19);
 | |
| 		    cr[WS(rs, 4)] = FMS(KP974927912, T1k, T1f);
 | |
| 		    ci[WS(rs, 3)] = FMA(KP974927912, T1k, T1f);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T15, T18, T14, T17, T16;
 | |
| 		    T14 = FNMS(KP356895867, TE, Tr);
 | |
| 		    T15 = FNMS(KP692021471, T14, Te);
 | |
| 		    T17 = FNMS(KP554958132, TR, TM);
 | |
| 		    T18 = FNMS(KP801937735, T17, TW);
 | |
| 		    T16 = FNMS(KP900968867, T15, T1);
 | |
| 		    ci[WS(rs, 2)] = FNMS(KP974927912, T18, T16);
 | |
| 		    cr[WS(rs, 3)] = FMA(KP974927912, T18, T16);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T10, T13, TZ, T12, T11;
 | |
| 		    TZ = FNMS(KP356895867, Te, TE);
 | |
| 		    T10 = FNMS(KP692021471, TZ, Tr);
 | |
| 		    T12 = FMA(KP554958132, TM, TW);
 | |
| 		    T13 = FNMS(KP801937735, T12, TR);
 | |
| 		    T11 = FNMS(KP900968867, T10, T1);
 | |
| 		    ci[WS(rs, 1)] = FNMS(KP974927912, T13, T11);
 | |
| 		    cr[WS(rs, 2)] = FMA(KP974927912, T13, T11);
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      { TW_FULL, 1, 7 },
 | |
|      { TW_NEXT, 1, 0 }
 | |
| };
 | |
| 
 | |
| static const hc2hc_desc desc = { 7, "hf_7", twinstr, &GENUS, { 18, 12, 54, 0 } };
 | |
| 
 | |
| void X(codelet_hf_7) (planner *p) {
 | |
|      X(khc2hc_register) (p, hf_7, &desc);
 | |
| }
 | |
| #else
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 7 -dit -name hf_7 -include rdft/scalar/hf.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 72 FP additions, 60 FP multiplications,
 | |
|  * (or, 36 additions, 24 multiplications, 36 fused multiply/add),
 | |
|  * 29 stack variables, 6 constants, and 28 memory accesses
 | |
|  */
 | |
| #include "rdft/scalar/hf.h"
 | |
| 
 | |
| static void hf_7(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DK(KP222520933, +0.222520933956314404288902564496794759466355569);
 | |
|      DK(KP900968867, +0.900968867902419126236102319507445051165919162);
 | |
|      DK(KP623489801, +0.623489801858733530525004884004239810632274731);
 | |
|      DK(KP433883739, +0.433883739117558120475768332848358754609990728);
 | |
|      DK(KP974927912, +0.974927912181823607018131682993931217232785801);
 | |
|      DK(KP781831482, +0.781831482468029808708444526674057750232334519);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  for (m = mb, W = W + ((mb - 1) * 12); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) {
 | |
| 	       E T1, TT, Tc, TV, TC, TO, Tn, TS, TI, TP, Ty, TU, TF, TQ;
 | |
| 	       T1 = cr[0];
 | |
| 	       TT = ci[0];
 | |
| 	       {
 | |
| 		    E T6, TA, Tb, TB;
 | |
| 		    {
 | |
| 			 E T3, T5, T2, T4;
 | |
| 			 T3 = cr[WS(rs, 1)];
 | |
| 			 T5 = ci[WS(rs, 1)];
 | |
| 			 T2 = W[0];
 | |
| 			 T4 = W[1];
 | |
| 			 T6 = FMA(T2, T3, T4 * T5);
 | |
| 			 TA = FNMS(T4, T3, T2 * T5);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E T8, Ta, T7, T9;
 | |
| 			 T8 = cr[WS(rs, 6)];
 | |
| 			 Ta = ci[WS(rs, 6)];
 | |
| 			 T7 = W[10];
 | |
| 			 T9 = W[11];
 | |
| 			 Tb = FMA(T7, T8, T9 * Ta);
 | |
| 			 TB = FNMS(T9, T8, T7 * Ta);
 | |
| 		    }
 | |
| 		    Tc = T6 + Tb;
 | |
| 		    TV = TA + TB;
 | |
| 		    TC = TA - TB;
 | |
| 		    TO = Tb - T6;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Th, TG, Tm, TH;
 | |
| 		    {
 | |
| 			 E Te, Tg, Td, Tf;
 | |
| 			 Te = cr[WS(rs, 2)];
 | |
| 			 Tg = ci[WS(rs, 2)];
 | |
| 			 Td = W[2];
 | |
| 			 Tf = W[3];
 | |
| 			 Th = FMA(Td, Te, Tf * Tg);
 | |
| 			 TG = FNMS(Tf, Te, Td * Tg);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E Tj, Tl, Ti, Tk;
 | |
| 			 Tj = cr[WS(rs, 5)];
 | |
| 			 Tl = ci[WS(rs, 5)];
 | |
| 			 Ti = W[8];
 | |
| 			 Tk = W[9];
 | |
| 			 Tm = FMA(Ti, Tj, Tk * Tl);
 | |
| 			 TH = FNMS(Tk, Tj, Ti * Tl);
 | |
| 		    }
 | |
| 		    Tn = Th + Tm;
 | |
| 		    TS = TG + TH;
 | |
| 		    TI = TG - TH;
 | |
| 		    TP = Th - Tm;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Ts, TD, Tx, TE;
 | |
| 		    {
 | |
| 			 E Tp, Tr, To, Tq;
 | |
| 			 Tp = cr[WS(rs, 3)];
 | |
| 			 Tr = ci[WS(rs, 3)];
 | |
| 			 To = W[4];
 | |
| 			 Tq = W[5];
 | |
| 			 Ts = FMA(To, Tp, Tq * Tr);
 | |
| 			 TD = FNMS(Tq, Tp, To * Tr);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E Tu, Tw, Tt, Tv;
 | |
| 			 Tu = cr[WS(rs, 4)];
 | |
| 			 Tw = ci[WS(rs, 4)];
 | |
| 			 Tt = W[6];
 | |
| 			 Tv = W[7];
 | |
| 			 Tx = FMA(Tt, Tu, Tv * Tw);
 | |
| 			 TE = FNMS(Tv, Tu, Tt * Tw);
 | |
| 		    }
 | |
| 		    Ty = Ts + Tx;
 | |
| 		    TU = TD + TE;
 | |
| 		    TF = TD - TE;
 | |
| 		    TQ = Tx - Ts;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TL, TK, TZ, T10;
 | |
| 		    cr[0] = T1 + Tc + Tn + Ty;
 | |
| 		    TL = FMA(KP781831482, TC, KP974927912 * TI) + (KP433883739 * TF);
 | |
| 		    TK = FMA(KP623489801, Tc, T1) + FNMA(KP900968867, Ty, KP222520933 * Tn);
 | |
| 		    ci[0] = TK - TL;
 | |
| 		    cr[WS(rs, 1)] = TK + TL;
 | |
| 		    ci[WS(rs, 6)] = TV + TS + TU + TT;
 | |
| 		    TZ = FMA(KP781831482, TO, KP433883739 * TQ) - (KP974927912 * TP);
 | |
| 		    T10 = FMA(KP623489801, TV, TT) + FNMA(KP900968867, TU, KP222520933 * TS);
 | |
| 		    cr[WS(rs, 6)] = TZ - T10;
 | |
| 		    ci[WS(rs, 5)] = TZ + T10;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TX, TY, TR, TW;
 | |
| 		    TX = FMA(KP974927912, TO, KP433883739 * TP) - (KP781831482 * TQ);
 | |
| 		    TY = FMA(KP623489801, TU, TT) + FNMA(KP900968867, TS, KP222520933 * TV);
 | |
| 		    cr[WS(rs, 5)] = TX - TY;
 | |
| 		    ci[WS(rs, 4)] = TX + TY;
 | |
| 		    TR = FMA(KP433883739, TO, KP781831482 * TP) + (KP974927912 * TQ);
 | |
| 		    TW = FMA(KP623489801, TS, TT) + FNMA(KP222520933, TU, KP900968867 * TV);
 | |
| 		    cr[WS(rs, 4)] = TR - TW;
 | |
| 		    ci[WS(rs, 3)] = TR + TW;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TN, TM, TJ, Tz;
 | |
| 		    TN = FMA(KP433883739, TC, KP974927912 * TF) - (KP781831482 * TI);
 | |
| 		    TM = FMA(KP623489801, Tn, T1) + FNMA(KP222520933, Ty, KP900968867 * Tc);
 | |
| 		    ci[WS(rs, 2)] = TM - TN;
 | |
| 		    cr[WS(rs, 3)] = TM + TN;
 | |
| 		    TJ = FNMS(KP781831482, TF, KP974927912 * TC) - (KP433883739 * TI);
 | |
| 		    Tz = FMA(KP623489801, Ty, T1) + FNMA(KP900968867, Tn, KP222520933 * Tc);
 | |
| 		    ci[WS(rs, 1)] = Tz - TJ;
 | |
| 		    cr[WS(rs, 2)] = Tz + TJ;
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      { TW_FULL, 1, 7 },
 | |
|      { TW_NEXT, 1, 0 }
 | |
| };
 | |
| 
 | |
| static const hc2hc_desc desc = { 7, "hf_7", twinstr, &GENUS, { 36, 24, 36, 0 } };
 | |
| 
 | |
| void X(codelet_hf_7) (planner *p) {
 | |
|      X(khc2hc_register) (p, hf_7, &desc);
 | |
| }
 | |
| #endif
 | 
