216 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			216 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| 
 | |
| /* Do a REDFT00 problem via an R2HC problem, with some pre/post-processing.
 | |
| 
 | |
|    This code uses the trick from FFTPACK, also documented in a similar
 | |
|    form by Numerical Recipes.  Unfortunately, this algorithm seems to
 | |
|    have intrinsic numerical problems (similar to those in
 | |
|    reodft11e-r2hc.c), possibly due to the fact that it multiplies its
 | |
|    input by a cosine, causing a loss of precision near the zero.  For
 | |
|    transforms of 16k points, it has already lost three or four decimal
 | |
|    places of accuracy, which we deem unacceptable.
 | |
| 
 | |
|    So, we have abandoned this algorithm in favor of the one in
 | |
|    redft00-r2hc-pad.c, which unfortunately sacrifices 30-50% in speed.
 | |
|    The only other alternative in the literature that does not have
 | |
|    similar numerical difficulties seems to be the direct adaptation of
 | |
|    the Cooley-Tukey decomposition for symmetric data, but this would
 | |
|    require a whole new set of codelets and it's not clear that it's
 | |
|    worth it at this point.  However, we did implement the latter
 | |
|    algorithm for the specific case of odd n (logically adapting the
 | |
|    split-radix algorithm); see reodft00e-splitradix.c. */
 | |
| 
 | |
| #include "reodft/reodft.h"
 | |
| 
 | |
| typedef struct {
 | |
|      solver super;
 | |
| } S;
 | |
| 
 | |
| typedef struct {
 | |
|      plan_rdft super;
 | |
|      plan *cld;
 | |
|      twid *td;
 | |
|      INT is, os;
 | |
|      INT n;
 | |
|      INT vl;
 | |
|      INT ivs, ovs;
 | |
| } P;
 | |
| 
 | |
| static void apply(const plan *ego_, R *I, R *O)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
|      INT is = ego->is, os = ego->os;
 | |
|      INT i, n = ego->n;
 | |
|      INT iv, vl = ego->vl;
 | |
|      INT ivs = ego->ivs, ovs = ego->ovs;
 | |
|      R *W = ego->td->W;
 | |
|      R *buf;
 | |
|      E csum;
 | |
| 
 | |
|      buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
 | |
| 
 | |
|      for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
 | |
| 	  buf[0] = I[0] + I[is * n];
 | |
| 	  csum = I[0] - I[is * n];
 | |
| 	  for (i = 1; i < n - i; ++i) {
 | |
| 	       E a, b, apb, amb;
 | |
| 	       a = I[is * i];
 | |
| 	       b = I[is * (n - i)];
 | |
| 	       csum += W[2*i] * (amb = K(2.0)*(a - b));
 | |
| 	       amb = W[2*i+1] * amb;
 | |
| 	       apb = (a + b);
 | |
| 	       buf[i] = apb - amb;
 | |
| 	       buf[n - i] = apb + amb;
 | |
| 	  }
 | |
| 	  if (i == n - i) {
 | |
| 	       buf[i] = K(2.0) * I[is * i];
 | |
| 	  }
 | |
| 	  
 | |
| 	  {
 | |
| 	       plan_rdft *cld = (plan_rdft *) ego->cld;
 | |
| 	       cld->apply((plan *) cld, buf, buf);
 | |
| 	  }
 | |
| 	  
 | |
| 	  /* FIXME: use recursive/cascade summation for better stability? */
 | |
| 	  O[0] = buf[0];
 | |
| 	  O[os] = csum;
 | |
| 	  for (i = 1; i + i < n; ++i) {
 | |
| 	       INT k = i + i;
 | |
| 	       O[os * k] = buf[i];
 | |
| 	       O[os * (k + 1)] = O[os * (k - 1)] - buf[n - i];
 | |
| 	  }
 | |
| 	  if (i + i == n) {
 | |
| 	       O[os * n] = buf[i];
 | |
| 	  }
 | |
|      }
 | |
| 
 | |
|      X(ifree)(buf);
 | |
| }
 | |
| 
 | |
| static void awake(plan *ego_, enum wakefulness wakefulness)
 | |
| {
 | |
|      P *ego = (P *) ego_;
 | |
|      static const tw_instr redft00e_tw[] = {
 | |
|           { TW_COS, 0, 1 },
 | |
|           { TW_SIN, 0, 1 },
 | |
|           { TW_NEXT, 1, 0 }
 | |
|      };
 | |
| 
 | |
|      X(plan_awake)(ego->cld, wakefulness);
 | |
|      X(twiddle_awake)(wakefulness,
 | |
| 		      &ego->td, redft00e_tw, 2*ego->n, 1, (ego->n+1)/2);
 | |
| }
 | |
| 
 | |
| static void destroy(plan *ego_)
 | |
| {
 | |
|      P *ego = (P *) ego_;
 | |
|      X(plan_destroy_internal)(ego->cld);
 | |
| }
 | |
| 
 | |
| static void print(const plan *ego_, printer *p)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
|      p->print(p, "(redft00e-r2hc-%D%v%(%p%))", ego->n + 1, ego->vl, ego->cld);
 | |
| }
 | |
| 
 | |
| static int applicable0(const solver *ego_, const problem *p_)
 | |
| {
 | |
|      const problem_rdft *p = (const problem_rdft *) p_;
 | |
|      UNUSED(ego_);
 | |
| 
 | |
|      return (1
 | |
| 	     && p->sz->rnk == 1
 | |
| 	     && p->vecsz->rnk <= 1
 | |
| 	     && p->kind[0] == REDFT00
 | |
| 	     && p->sz->dims[0].n > 1  /* n == 1 is not well-defined */
 | |
| 	  );
 | |
| }
 | |
| 
 | |
| static int applicable(const solver *ego, const problem *p, const planner *plnr)
 | |
| {
 | |
|      return (!NO_SLOWP(plnr) && applicable0(ego, p));
 | |
| }
 | |
| 
 | |
| static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
 | |
| {
 | |
|      P *pln;
 | |
|      const problem_rdft *p;
 | |
|      plan *cld;
 | |
|      R *buf;
 | |
|      INT n;
 | |
|      opcnt ops;
 | |
| 
 | |
|      static const plan_adt padt = {
 | |
| 	  X(rdft_solve), awake, print, destroy
 | |
|      };
 | |
| 
 | |
|      if (!applicable(ego_, p_, plnr))
 | |
|           return (plan *)0;
 | |
| 
 | |
|      p = (const problem_rdft *) p_;
 | |
| 
 | |
|      n = p->sz->dims[0].n - 1;
 | |
|      A(n > 0);
 | |
|      buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
 | |
| 
 | |
|      cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1), 
 | |
| 						   X(mktensor_0d)(), 
 | |
| 						   buf, buf, R2HC));
 | |
|      X(ifree)(buf);
 | |
|      if (!cld)
 | |
|           return (plan *)0;
 | |
| 
 | |
|      pln = MKPLAN_RDFT(P, &padt, apply);
 | |
| 
 | |
|      pln->n = n;
 | |
|      pln->is = p->sz->dims[0].is;
 | |
|      pln->os = p->sz->dims[0].os;
 | |
|      pln->cld = cld;
 | |
|      pln->td = 0;
 | |
| 
 | |
|      X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
 | |
|      
 | |
|      X(ops_zero)(&ops);
 | |
|      ops.other = 8 + (n-1)/2 * 11 + (1 - n % 2) * 5;
 | |
|      ops.add = 2 + (n-1)/2 * 5;
 | |
|      ops.mul = (n-1)/2 * 3 + (1 - n % 2) * 1;
 | |
| 
 | |
|      X(ops_zero)(&pln->super.super.ops);
 | |
|      X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
 | |
|      X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
 | |
| 
 | |
|      return &(pln->super.super);
 | |
| }
 | |
| 
 | |
| /* constructor */
 | |
| static solver *mksolver(void)
 | |
| {
 | |
|      static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
 | |
|      S *slv = MKSOLVER(S, &sadt);
 | |
|      return &(slv->super);
 | |
| }
 | |
| 
 | |
| void X(redft00e_r2hc_register)(planner *p)
 | |
| {
 | |
|      REGISTER_SOLVER(p, mksolver());
 | |
| }
 | 
