265 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			265 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* This file was automatically generated --- DO NOT EDIT */
 | |
| /* Generated on Tue Sep 14 10:44:37 EDT 2021 */
 | |
| 
 | |
| #include "dft/codelet-dft.h"
 | |
| 
 | |
| #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 5 -name t2_5 -include dft/scalar/t.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 44 FP additions, 40 FP multiplications,
 | |
|  * (or, 14 additions, 10 multiplications, 30 fused multiply/add),
 | |
|  * 38 stack variables, 4 constants, and 20 memory accesses
 | |
|  */
 | |
| #include "dft/scalar/t.h"
 | |
| 
 | |
| static void t2_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DK(KP951056516, +0.951056516295153572116439333379382143405698634);
 | |
|      DK(KP559016994, +0.559016994374947424102293417182819058860154590);
 | |
|      DK(KP618033988, +0.618033988749894848204586834365638117720309180);
 | |
|      DK(KP250000000, +0.250000000000000000000000000000000000000000000);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  for (m = mb, W = W + (mb * 4); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) {
 | |
| 	       E T2, Ta, T8, T5, Tb, Tm, Tf, Tj, T9, Te;
 | |
| 	       T2 = W[0];
 | |
| 	       Ta = W[3];
 | |
| 	       T8 = W[2];
 | |
| 	       T9 = T2 * T8;
 | |
| 	       Te = T2 * Ta;
 | |
| 	       T5 = W[1];
 | |
| 	       Tb = FNMS(T5, Ta, T9);
 | |
| 	       Tm = FNMS(T5, T8, Te);
 | |
| 	       Tf = FMA(T5, T8, Te);
 | |
| 	       Tj = FMA(T5, Ta, T9);
 | |
| 	       {
 | |
| 		    E T1, TO, T7, Th, Ti, Tz, TB, TL, To, Ts, Tt, TE, TG, TM;
 | |
| 		    T1 = ri[0];
 | |
| 		    TO = ii[0];
 | |
| 		    {
 | |
| 			 E T3, T4, T6, Ty, Tc, Td, Tg, TA;
 | |
| 			 T3 = ri[WS(rs, 1)];
 | |
| 			 T4 = T2 * T3;
 | |
| 			 T6 = ii[WS(rs, 1)];
 | |
| 			 Ty = T2 * T6;
 | |
| 			 Tc = ri[WS(rs, 4)];
 | |
| 			 Td = Tb * Tc;
 | |
| 			 Tg = ii[WS(rs, 4)];
 | |
| 			 TA = Tb * Tg;
 | |
| 			 T7 = FMA(T5, T6, T4);
 | |
| 			 Th = FMA(Tf, Tg, Td);
 | |
| 			 Ti = T7 + Th;
 | |
| 			 Tz = FNMS(T5, T3, Ty);
 | |
| 			 TB = FNMS(Tf, Tc, TA);
 | |
| 			 TL = Tz + TB;
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E Tk, Tl, Tn, TD, Tp, Tq, Tr, TF;
 | |
| 			 Tk = ri[WS(rs, 2)];
 | |
| 			 Tl = Tj * Tk;
 | |
| 			 Tn = ii[WS(rs, 2)];
 | |
| 			 TD = Tj * Tn;
 | |
| 			 Tp = ri[WS(rs, 3)];
 | |
| 			 Tq = T8 * Tp;
 | |
| 			 Tr = ii[WS(rs, 3)];
 | |
| 			 TF = T8 * Tr;
 | |
| 			 To = FMA(Tm, Tn, Tl);
 | |
| 			 Ts = FMA(Ta, Tr, Tq);
 | |
| 			 Tt = To + Ts;
 | |
| 			 TE = FNMS(Tm, Tk, TD);
 | |
| 			 TG = FNMS(Ta, Tp, TF);
 | |
| 			 TM = TE + TG;
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E Tw, Tu, Tv, TI, TK, TC, TH, TJ, Tx;
 | |
| 			 Tw = Ti - Tt;
 | |
| 			 Tu = Ti + Tt;
 | |
| 			 Tv = FNMS(KP250000000, Tu, T1);
 | |
| 			 TC = Tz - TB;
 | |
| 			 TH = TE - TG;
 | |
| 			 TI = FMA(KP618033988, TH, TC);
 | |
| 			 TK = FNMS(KP618033988, TC, TH);
 | |
| 			 ri[0] = T1 + Tu;
 | |
| 			 TJ = FNMS(KP559016994, Tw, Tv);
 | |
| 			 ri[WS(rs, 2)] = FNMS(KP951056516, TK, TJ);
 | |
| 			 ri[WS(rs, 3)] = FMA(KP951056516, TK, TJ);
 | |
| 			 Tx = FMA(KP559016994, Tw, Tv);
 | |
| 			 ri[WS(rs, 4)] = FNMS(KP951056516, TI, Tx);
 | |
| 			 ri[WS(rs, 1)] = FMA(KP951056516, TI, Tx);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E TQ, TN, TP, TU, TW, TS, TT, TV, TR;
 | |
| 			 TQ = TL - TM;
 | |
| 			 TN = TL + TM;
 | |
| 			 TP = FNMS(KP250000000, TN, TO);
 | |
| 			 TS = T7 - Th;
 | |
| 			 TT = To - Ts;
 | |
| 			 TU = FMA(KP618033988, TT, TS);
 | |
| 			 TW = FNMS(KP618033988, TS, TT);
 | |
| 			 ii[0] = TN + TO;
 | |
| 			 TV = FNMS(KP559016994, TQ, TP);
 | |
| 			 ii[WS(rs, 2)] = FMA(KP951056516, TW, TV);
 | |
| 			 ii[WS(rs, 3)] = FNMS(KP951056516, TW, TV);
 | |
| 			 TR = FMA(KP559016994, TQ, TP);
 | |
| 			 ii[WS(rs, 1)] = FNMS(KP951056516, TU, TR);
 | |
| 			 ii[WS(rs, 4)] = FMA(KP951056516, TU, TR);
 | |
| 		    }
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      { TW_CEXP, 0, 1 },
 | |
|      { TW_CEXP, 0, 3 },
 | |
|      { TW_NEXT, 1, 0 }
 | |
| };
 | |
| 
 | |
| static const ct_desc desc = { 5, "t2_5", twinstr, &GENUS, { 14, 10, 30, 0 }, 0, 0, 0 };
 | |
| 
 | |
| void X(codelet_t2_5) (planner *p) {
 | |
|      X(kdft_dit_register) (p, t2_5, &desc);
 | |
| }
 | |
| #else
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 5 -name t2_5 -include dft/scalar/t.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 44 FP additions, 32 FP multiplications,
 | |
|  * (or, 30 additions, 18 multiplications, 14 fused multiply/add),
 | |
|  * 37 stack variables, 4 constants, and 20 memory accesses
 | |
|  */
 | |
| #include "dft/scalar/t.h"
 | |
| 
 | |
| static void t2_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DK(KP250000000, +0.250000000000000000000000000000000000000000000);
 | |
|      DK(KP559016994, +0.559016994374947424102293417182819058860154590);
 | |
|      DK(KP587785252, +0.587785252292473129168705954639072768597652438);
 | |
|      DK(KP951056516, +0.951056516295153572116439333379382143405698634);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  for (m = mb, W = W + (mb * 4); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) {
 | |
| 	       E T2, T4, T7, T9, Tb, Tl, Tf, Tj;
 | |
| 	       {
 | |
| 		    E T8, Te, Ta, Td;
 | |
| 		    T2 = W[0];
 | |
| 		    T4 = W[1];
 | |
| 		    T7 = W[2];
 | |
| 		    T9 = W[3];
 | |
| 		    T8 = T2 * T7;
 | |
| 		    Te = T4 * T7;
 | |
| 		    Ta = T4 * T9;
 | |
| 		    Td = T2 * T9;
 | |
| 		    Tb = T8 - Ta;
 | |
| 		    Tl = Td - Te;
 | |
| 		    Tf = Td + Te;
 | |
| 		    Tj = T8 + Ta;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T1, TI, Ty, TB, TN, TM, TF, TG, TH, Ti, Tr, Ts;
 | |
| 		    T1 = ri[0];
 | |
| 		    TI = ii[0];
 | |
| 		    {
 | |
| 			 E T6, Tw, Tq, TA, Th, Tx, Tn, Tz;
 | |
| 			 {
 | |
| 			      E T3, T5, To, Tp;
 | |
| 			      T3 = ri[WS(rs, 1)];
 | |
| 			      T5 = ii[WS(rs, 1)];
 | |
| 			      T6 = FMA(T2, T3, T4 * T5);
 | |
| 			      Tw = FNMS(T4, T3, T2 * T5);
 | |
| 			      To = ri[WS(rs, 3)];
 | |
| 			      Tp = ii[WS(rs, 3)];
 | |
| 			      Tq = FMA(T7, To, T9 * Tp);
 | |
| 			      TA = FNMS(T9, To, T7 * Tp);
 | |
| 			 }
 | |
| 			 {
 | |
| 			      E Tc, Tg, Tk, Tm;
 | |
| 			      Tc = ri[WS(rs, 4)];
 | |
| 			      Tg = ii[WS(rs, 4)];
 | |
| 			      Th = FMA(Tb, Tc, Tf * Tg);
 | |
| 			      Tx = FNMS(Tf, Tc, Tb * Tg);
 | |
| 			      Tk = ri[WS(rs, 2)];
 | |
| 			      Tm = ii[WS(rs, 2)];
 | |
| 			      Tn = FMA(Tj, Tk, Tl * Tm);
 | |
| 			      Tz = FNMS(Tl, Tk, Tj * Tm);
 | |
| 			 }
 | |
| 			 Ty = Tw - Tx;
 | |
| 			 TB = Tz - TA;
 | |
| 			 TN = Tn - Tq;
 | |
| 			 TM = T6 - Th;
 | |
| 			 TF = Tw + Tx;
 | |
| 			 TG = Tz + TA;
 | |
| 			 TH = TF + TG;
 | |
| 			 Ti = T6 + Th;
 | |
| 			 Tr = Tn + Tq;
 | |
| 			 Ts = Ti + Tr;
 | |
| 		    }
 | |
| 		    ri[0] = T1 + Ts;
 | |
| 		    ii[0] = TH + TI;
 | |
| 		    {
 | |
| 			 E TC, TE, Tv, TD, Tt, Tu;
 | |
| 			 TC = FMA(KP951056516, Ty, KP587785252 * TB);
 | |
| 			 TE = FNMS(KP587785252, Ty, KP951056516 * TB);
 | |
| 			 Tt = KP559016994 * (Ti - Tr);
 | |
| 			 Tu = FNMS(KP250000000, Ts, T1);
 | |
| 			 Tv = Tt + Tu;
 | |
| 			 TD = Tu - Tt;
 | |
| 			 ri[WS(rs, 4)] = Tv - TC;
 | |
| 			 ri[WS(rs, 3)] = TD + TE;
 | |
| 			 ri[WS(rs, 1)] = Tv + TC;
 | |
| 			 ri[WS(rs, 2)] = TD - TE;
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E TO, TP, TL, TQ, TJ, TK;
 | |
| 			 TO = FMA(KP951056516, TM, KP587785252 * TN);
 | |
| 			 TP = FNMS(KP587785252, TM, KP951056516 * TN);
 | |
| 			 TJ = KP559016994 * (TF - TG);
 | |
| 			 TK = FNMS(KP250000000, TH, TI);
 | |
| 			 TL = TJ + TK;
 | |
| 			 TQ = TK - TJ;
 | |
| 			 ii[WS(rs, 1)] = TL - TO;
 | |
| 			 ii[WS(rs, 3)] = TQ - TP;
 | |
| 			 ii[WS(rs, 4)] = TO + TL;
 | |
| 			 ii[WS(rs, 2)] = TP + TQ;
 | |
| 		    }
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      { TW_CEXP, 0, 1 },
 | |
|      { TW_CEXP, 0, 3 },
 | |
|      { TW_NEXT, 1, 0 }
 | |
| };
 | |
| 
 | |
| static const ct_desc desc = { 5, "t2_5", twinstr, &GENUS, { 30, 18, 14, 0 }, 0, 0, 0 };
 | |
| 
 | |
| void X(codelet_t2_5) (planner *p) {
 | |
|      X(kdft_dit_register) (p, t2_5, &desc);
 | |
| }
 | |
| #endif
 | 
