254 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			254 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* This file was automatically generated --- DO NOT EDIT */
 | |
| /* Generated on Tue Sep 14 10:44:26 EDT 2021 */
 | |
| 
 | |
| #include "dft/codelet-dft.h"
 | |
| 
 | |
| #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 5 -name t1_5 -include dft/scalar/t.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 40 FP additions, 34 FP multiplications,
 | |
|  * (or, 14 additions, 8 multiplications, 26 fused multiply/add),
 | |
|  * 31 stack variables, 4 constants, and 20 memory accesses
 | |
|  */
 | |
| #include "dft/scalar/t.h"
 | |
| 
 | |
| static void t1_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DK(KP951056516, +0.951056516295153572116439333379382143405698634);
 | |
|      DK(KP559016994, +0.559016994374947424102293417182819058860154590);
 | |
|      DK(KP618033988, +0.618033988749894848204586834365638117720309180);
 | |
|      DK(KP250000000, +0.250000000000000000000000000000000000000000000);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
 | |
| 	       E T1, TM, T7, Tx, Td, Tz, Te, TJ, Tk, TC, Tq, TE, Tr, TK;
 | |
| 	       T1 = ri[0];
 | |
| 	       TM = ii[0];
 | |
| 	       {
 | |
| 		    E T3, T6, T4, Tw, T9, Tc, Ta, Ty, T2, T8, T5, Tb;
 | |
| 		    T3 = ri[WS(rs, 1)];
 | |
| 		    T6 = ii[WS(rs, 1)];
 | |
| 		    T2 = W[0];
 | |
| 		    T4 = T2 * T3;
 | |
| 		    Tw = T2 * T6;
 | |
| 		    T9 = ri[WS(rs, 4)];
 | |
| 		    Tc = ii[WS(rs, 4)];
 | |
| 		    T8 = W[6];
 | |
| 		    Ta = T8 * T9;
 | |
| 		    Ty = T8 * Tc;
 | |
| 		    T5 = W[1];
 | |
| 		    T7 = FMA(T5, T6, T4);
 | |
| 		    Tx = FNMS(T5, T3, Tw);
 | |
| 		    Tb = W[7];
 | |
| 		    Td = FMA(Tb, Tc, Ta);
 | |
| 		    Tz = FNMS(Tb, T9, Ty);
 | |
| 		    Te = T7 + Td;
 | |
| 		    TJ = Tx + Tz;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tg, Tj, Th, TB, Tm, Tp, Tn, TD, Tf, Tl, Ti, To;
 | |
| 		    Tg = ri[WS(rs, 2)];
 | |
| 		    Tj = ii[WS(rs, 2)];
 | |
| 		    Tf = W[2];
 | |
| 		    Th = Tf * Tg;
 | |
| 		    TB = Tf * Tj;
 | |
| 		    Tm = ri[WS(rs, 3)];
 | |
| 		    Tp = ii[WS(rs, 3)];
 | |
| 		    Tl = W[4];
 | |
| 		    Tn = Tl * Tm;
 | |
| 		    TD = Tl * Tp;
 | |
| 		    Ti = W[3];
 | |
| 		    Tk = FMA(Ti, Tj, Th);
 | |
| 		    TC = FNMS(Ti, Tg, TB);
 | |
| 		    To = W[5];
 | |
| 		    Tq = FMA(To, Tp, Tn);
 | |
| 		    TE = FNMS(To, Tm, TD);
 | |
| 		    Tr = Tk + Tq;
 | |
| 		    TK = TC + TE;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tu, Ts, Tt, TG, TI, TA, TF, TH, Tv;
 | |
| 		    Tu = Te - Tr;
 | |
| 		    Ts = Te + Tr;
 | |
| 		    Tt = FNMS(KP250000000, Ts, T1);
 | |
| 		    TA = Tx - Tz;
 | |
| 		    TF = TC - TE;
 | |
| 		    TG = FMA(KP618033988, TF, TA);
 | |
| 		    TI = FNMS(KP618033988, TA, TF);
 | |
| 		    ri[0] = T1 + Ts;
 | |
| 		    TH = FNMS(KP559016994, Tu, Tt);
 | |
| 		    ri[WS(rs, 2)] = FNMS(KP951056516, TI, TH);
 | |
| 		    ri[WS(rs, 3)] = FMA(KP951056516, TI, TH);
 | |
| 		    Tv = FMA(KP559016994, Tu, Tt);
 | |
| 		    ri[WS(rs, 4)] = FNMS(KP951056516, TG, Tv);
 | |
| 		    ri[WS(rs, 1)] = FMA(KP951056516, TG, Tv);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TO, TL, TN, TS, TU, TQ, TR, TT, TP;
 | |
| 		    TO = TJ - TK;
 | |
| 		    TL = TJ + TK;
 | |
| 		    TN = FNMS(KP250000000, TL, TM);
 | |
| 		    TQ = T7 - Td;
 | |
| 		    TR = Tk - Tq;
 | |
| 		    TS = FMA(KP618033988, TR, TQ);
 | |
| 		    TU = FNMS(KP618033988, TQ, TR);
 | |
| 		    ii[0] = TL + TM;
 | |
| 		    TT = FNMS(KP559016994, TO, TN);
 | |
| 		    ii[WS(rs, 2)] = FMA(KP951056516, TU, TT);
 | |
| 		    ii[WS(rs, 3)] = FNMS(KP951056516, TU, TT);
 | |
| 		    TP = FMA(KP559016994, TO, TN);
 | |
| 		    ii[WS(rs, 1)] = FNMS(KP951056516, TS, TP);
 | |
| 		    ii[WS(rs, 4)] = FMA(KP951056516, TS, TP);
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      { TW_FULL, 0, 5 },
 | |
|      { TW_NEXT, 1, 0 }
 | |
| };
 | |
| 
 | |
| static const ct_desc desc = { 5, "t1_5", twinstr, &GENUS, { 14, 8, 26, 0 }, 0, 0, 0 };
 | |
| 
 | |
| void X(codelet_t1_5) (planner *p) {
 | |
|      X(kdft_dit_register) (p, t1_5, &desc);
 | |
| }
 | |
| #else
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 5 -name t1_5 -include dft/scalar/t.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 40 FP additions, 28 FP multiplications,
 | |
|  * (or, 26 additions, 14 multiplications, 14 fused multiply/add),
 | |
|  * 29 stack variables, 4 constants, and 20 memory accesses
 | |
|  */
 | |
| #include "dft/scalar/t.h"
 | |
| 
 | |
| static void t1_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DK(KP250000000, +0.250000000000000000000000000000000000000000000);
 | |
|      DK(KP559016994, +0.559016994374947424102293417182819058860154590);
 | |
|      DK(KP587785252, +0.587785252292473129168705954639072768597652438);
 | |
|      DK(KP951056516, +0.951056516295153572116439333379382143405698634);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  for (m = mb, W = W + (mb * 8); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
 | |
| 	       E T1, TE, Tu, Tx, TJ, TI, TB, TC, TD, Tc, Tn, To;
 | |
| 	       T1 = ri[0];
 | |
| 	       TE = ii[0];
 | |
| 	       {
 | |
| 		    E T6, Ts, Tm, Tw, Tb, Tt, Th, Tv;
 | |
| 		    {
 | |
| 			 E T3, T5, T2, T4;
 | |
| 			 T3 = ri[WS(rs, 1)];
 | |
| 			 T5 = ii[WS(rs, 1)];
 | |
| 			 T2 = W[0];
 | |
| 			 T4 = W[1];
 | |
| 			 T6 = FMA(T2, T3, T4 * T5);
 | |
| 			 Ts = FNMS(T4, T3, T2 * T5);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E Tj, Tl, Ti, Tk;
 | |
| 			 Tj = ri[WS(rs, 3)];
 | |
| 			 Tl = ii[WS(rs, 3)];
 | |
| 			 Ti = W[4];
 | |
| 			 Tk = W[5];
 | |
| 			 Tm = FMA(Ti, Tj, Tk * Tl);
 | |
| 			 Tw = FNMS(Tk, Tj, Ti * Tl);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E T8, Ta, T7, T9;
 | |
| 			 T8 = ri[WS(rs, 4)];
 | |
| 			 Ta = ii[WS(rs, 4)];
 | |
| 			 T7 = W[6];
 | |
| 			 T9 = W[7];
 | |
| 			 Tb = FMA(T7, T8, T9 * Ta);
 | |
| 			 Tt = FNMS(T9, T8, T7 * Ta);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E Te, Tg, Td, Tf;
 | |
| 			 Te = ri[WS(rs, 2)];
 | |
| 			 Tg = ii[WS(rs, 2)];
 | |
| 			 Td = W[2];
 | |
| 			 Tf = W[3];
 | |
| 			 Th = FMA(Td, Te, Tf * Tg);
 | |
| 			 Tv = FNMS(Tf, Te, Td * Tg);
 | |
| 		    }
 | |
| 		    Tu = Ts - Tt;
 | |
| 		    Tx = Tv - Tw;
 | |
| 		    TJ = Th - Tm;
 | |
| 		    TI = T6 - Tb;
 | |
| 		    TB = Ts + Tt;
 | |
| 		    TC = Tv + Tw;
 | |
| 		    TD = TB + TC;
 | |
| 		    Tc = T6 + Tb;
 | |
| 		    Tn = Th + Tm;
 | |
| 		    To = Tc + Tn;
 | |
| 	       }
 | |
| 	       ri[0] = T1 + To;
 | |
| 	       ii[0] = TD + TE;
 | |
| 	       {
 | |
| 		    E Ty, TA, Tr, Tz, Tp, Tq;
 | |
| 		    Ty = FMA(KP951056516, Tu, KP587785252 * Tx);
 | |
| 		    TA = FNMS(KP587785252, Tu, KP951056516 * Tx);
 | |
| 		    Tp = KP559016994 * (Tc - Tn);
 | |
| 		    Tq = FNMS(KP250000000, To, T1);
 | |
| 		    Tr = Tp + Tq;
 | |
| 		    Tz = Tq - Tp;
 | |
| 		    ri[WS(rs, 4)] = Tr - Ty;
 | |
| 		    ri[WS(rs, 3)] = Tz + TA;
 | |
| 		    ri[WS(rs, 1)] = Tr + Ty;
 | |
| 		    ri[WS(rs, 2)] = Tz - TA;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TK, TL, TH, TM, TF, TG;
 | |
| 		    TK = FMA(KP951056516, TI, KP587785252 * TJ);
 | |
| 		    TL = FNMS(KP587785252, TI, KP951056516 * TJ);
 | |
| 		    TF = KP559016994 * (TB - TC);
 | |
| 		    TG = FNMS(KP250000000, TD, TE);
 | |
| 		    TH = TF + TG;
 | |
| 		    TM = TG - TF;
 | |
| 		    ii[WS(rs, 1)] = TH - TK;
 | |
| 		    ii[WS(rs, 3)] = TM - TL;
 | |
| 		    ii[WS(rs, 4)] = TK + TH;
 | |
| 		    ii[WS(rs, 2)] = TL + TM;
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      { TW_FULL, 0, 5 },
 | |
|      { TW_NEXT, 1, 0 }
 | |
| };
 | |
| 
 | |
| static const ct_desc desc = { 5, "t1_5", twinstr, &GENUS, { 26, 14, 14, 0 }, 0, 0, 0 };
 | |
| 
 | |
| void X(codelet_t1_5) (planner *p) {
 | |
|      X(kdft_dit_register) (p, t1_5, &desc);
 | |
| }
 | |
| #endif
 | 
