153 lines
		
	
	
		
			4 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
			
		
		
	
	
			153 lines
		
	
	
		
			4 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
(*
 | 
						|
 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
 | 
						|
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 | 
						|
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | 
						|
 *
 | 
						|
 *)
 | 
						|
 | 
						|
(* trigonometric transforms *)
 | 
						|
open Util
 | 
						|
 | 
						|
(* DFT of real input *)
 | 
						|
let rdft sign n input =
 | 
						|
  Fft.dft sign n (Complex.real @@ input)
 | 
						|
 | 
						|
(* DFT of hermitian input *)
 | 
						|
let hdft sign n input =
 | 
						|
  Fft.dft sign n (Complex.hermitian n input)
 | 
						|
 | 
						|
(* DFT real transform of vectors of two real numbers,
 | 
						|
   multiplication by (NaN I), and summation *)
 | 
						|
let dft_via_rdft sign n input =
 | 
						|
  let f = rdft sign n input
 | 
						|
  in fun i -> 
 | 
						|
    Complex.plus
 | 
						|
      [Complex.real (f i); 
 | 
						|
       Complex.times (Complex.nan Expr.I) (Complex.imag (f i))]
 | 
						|
 | 
						|
(* Discrete Hartley Transform *)
 | 
						|
let dht sign n input =
 | 
						|
  let f = Fft.dft sign n (Complex.real @@ input) in
 | 
						|
  (fun i ->
 | 
						|
    Complex.plus [Complex.real (f i); Complex.imag (f i)])
 | 
						|
 | 
						|
let trigI n input = 
 | 
						|
  let twon = 2 * n in
 | 
						|
  let input' = Complex.hermitian twon input
 | 
						|
  in
 | 
						|
  Fft.dft 1 twon input'
 | 
						|
 | 
						|
let interleave_zero input = fun i -> 
 | 
						|
  if (i mod 2) == 0
 | 
						|
      then Complex.zero
 | 
						|
  else
 | 
						|
    input ((i - 1) / 2)
 | 
						|
 | 
						|
let trigII n input =
 | 
						|
  let fourn = 4 * n in
 | 
						|
  let input' = Complex.hermitian fourn (interleave_zero input)
 | 
						|
  in
 | 
						|
  Fft.dft 1 fourn input'
 | 
						|
 | 
						|
let trigIII n input =
 | 
						|
  let fourn = 4 * n in
 | 
						|
  let twon = 2 * n in
 | 
						|
  let input' = Complex.hermitian fourn
 | 
						|
      (fun i -> 
 | 
						|
	if (i == 0) then
 | 
						|
	  Complex.real (input 0)
 | 
						|
	else if (i == twon) then
 | 
						|
	  Complex.uminus (Complex.real (input 0))
 | 
						|
	else
 | 
						|
	  Complex.antihermitian twon input i)
 | 
						|
  in
 | 
						|
  let dft = Fft.dft 1 fourn input'
 | 
						|
  in fun k -> dft (2 * k + 1)
 | 
						|
 | 
						|
let zero_extend n input = fun i ->
 | 
						|
  if (i >= 0 && i < n)
 | 
						|
  then input i
 | 
						|
  else Complex.zero
 | 
						|
 | 
						|
let trigIV n input =
 | 
						|
  let fourn = 4 * n
 | 
						|
  and eightn = 8 * n in
 | 
						|
  let input' = Complex.hermitian eightn 
 | 
						|
      (zero_extend fourn (Complex.antihermitian fourn 
 | 
						|
			 (interleave_zero input)))
 | 
						|
  in
 | 
						|
  let dft = Fft.dft 1 eightn input'
 | 
						|
  in fun k -> dft (2 * k + 1)
 | 
						|
 | 
						|
let make_dct scale nshift trig =
 | 
						|
  fun n input ->
 | 
						|
    trig (n - nshift) (Complex.real @@ (Complex.times scale) @@ 
 | 
						|
		       (zero_extend n input))
 | 
						|
(*
 | 
						|
 * DCT-I:  y[k] = sum x[j] cos(pi * j * k / n)
 | 
						|
 *)
 | 
						|
let dctI = make_dct Complex.one 1 trigI
 | 
						|
 | 
						|
(*
 | 
						|
 * DCT-II:  y[k] = sum x[j] cos(pi * (j + 1/2) * k / n)
 | 
						|
 *)
 | 
						|
let dctII = make_dct Complex.one 0 trigII
 | 
						|
 | 
						|
(*
 | 
						|
 * DCT-III:  y[k] = sum x[j] cos(pi * j * (k + 1/2) / n)
 | 
						|
 *)
 | 
						|
let dctIII = make_dct Complex.half 0 trigIII
 | 
						|
 | 
						|
(*
 | 
						|
 * DCT-IV  y[k] = sum x[j] cos(pi * (j + 1/2) * (k + 1/2) / n)
 | 
						|
 *)
 | 
						|
let dctIV = make_dct Complex.half 0 trigIV
 | 
						|
 | 
						|
let shift s input = fun i -> input (i - s)
 | 
						|
 | 
						|
(* DST-x input := TRIG-x (input / i) *)
 | 
						|
let make_dst scale nshift kshift jshift trig =
 | 
						|
  fun n input ->
 | 
						|
    Complex.real @@ 
 | 
						|
    (shift (- jshift)
 | 
						|
       (trig (n + nshift) (Complex.uminus @@
 | 
						|
			   (Complex.times Complex.i) @@
 | 
						|
			   (Complex.times scale) @@ 
 | 
						|
			   Complex.real @@ 
 | 
						|
			   (shift kshift (zero_extend n input)))))
 | 
						|
 | 
						|
(*
 | 
						|
 * DST-I:  y[k] = sum x[j] sin(pi * j * k / n)
 | 
						|
 *)
 | 
						|
let dstI = make_dst Complex.one 1 1 1 trigI
 | 
						|
 | 
						|
(*
 | 
						|
 * DST-II:  y[k] = sum x[j] sin(pi * (j + 1/2) * k / n)
 | 
						|
 *)
 | 
						|
let dstII = make_dst Complex.one 0 0 1 trigII
 | 
						|
 | 
						|
(*
 | 
						|
 * DST-III:  y[k] = sum x[j] sin(pi * j * (k + 1/2) / n)
 | 
						|
 *)
 | 
						|
let dstIII = make_dst Complex.half 0 1 0 trigIII
 | 
						|
 | 
						|
(*
 | 
						|
 * DST-IV  y[k] = sum x[j] sin(pi * (j + 1/2) * (k + 1/2) / n)
 | 
						|
 *)
 | 
						|
let dstIV = make_dst Complex.half 0 0 0 trigIV
 | 
						|
 |