furnace/src/engine/platform/sid2.cpp
2024-09-21 04:36:22 -05:00

760 lines
23 KiB
C++

/**
* Furnace Tracker - multi-system chiptune tracker
* Copyright (C) 2021-2024 tildearrow and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
// thanks LTVA
#include "sid2.h"
#include "../engine.h"
#include "IconsFontAwesome4.h"
#include <math.h>
#include "../../ta-log.h"
#define rWrite(a,v) if (!skipRegisterWrites) {writes.push(QueuedWrite(a,v)); if (dumpWrites) {addWrite(a,v);} }
#define CHIP_FREQBASE 524288
const char* regCheatSheetSID2[]={
"FreqL0", "00",
"FreqH0", "01",
"PWL0", "02",
"PWH0Vol", "03",
"Control0", "04",
"AtkDcy0", "05",
"StnRis0", "06",
"FreqL1", "07",
"FreqH1", "08",
"PWL1", "09",
"PWH1Vol", "0A",
"Control1", "0B",
"AtkDcy1", "0C",
"StnRis1", "0D",
"FreqL2", "0E",
"FreqH2", "0F",
"PWL2", "10",
"PWH2Vol", "11",
"Control2", "12",
"AtkDcy2", "13",
"StnRis2", "14",
"FCL0Ctrl", "15",
"FCH0", "16",
"FilterRes0", "17",
"FCL1Ctrl", "18",
"FCH1", "19",
"FilterRes1", "1A",
"FCL2Ctrl", "1B",
"FCH2", "1C",
"FilterRes2", "1D",
"NoiModeFrMSB01", "1E",
"WaveMixModeFrMSB2", "1F",
NULL
};
const char** DivPlatformSID2::getRegisterSheet() {
return regCheatSheetSID2;
}
void DivPlatformSID2::acquire(short** buf, size_t len)
{
for (size_t i=0; i<len; i++)
{
if (!writes.empty())
{
QueuedWrite w=writes.front();
sid2->write(w.addr,w.val);
regPool[w.addr&0x1f]=w.val;
writes.pop();
}
sid2->clock();
buf[0][i]=sid2->output();
if (++writeOscBuf>=16)
{
writeOscBuf=0;
for(int j = 0; j < 3; j++)
{
oscBuf[j]->data[oscBuf[j]->needle++] = sid2->chan_out[j] / 4;
}
}
}
}
void DivPlatformSID2::updateFilter(int channel)
{
rWrite(0x15 + 3 * channel,(chan[channel].filtCut&15) | ((chan[channel].filtControl & 7) << 4) | (chan[channel].filter << 7));
rWrite(0x16 + 3 * channel,(chan[channel].filtCut >> 4));
rWrite(0x17 + 3 * channel,chan[channel].filtRes);
}
void DivPlatformSID2::tick(bool sysTick) {
for (int _i=0; _i<3; _i++) {
int i=chanOrder[_i];
bool willUpdateFilter = false;
chan[i].std.next();
if (sysTick) {
if (chan[i].pw_slide!=0) {
chan[i].duty-=chan[i].pw_slide;
chan[i].duty=CLAMP(chan[i].duty,0,0xfff);
rWrite(i*7+2,chan[i].duty&0xff);
rWrite(i*7+3,(chan[i].duty>>8)|(chan[i].outVol<<4));
}
if (chan[i].cutoff_slide!=0) {
chan[i].filtCut+=chan[i].cutoff_slide;
chan[i].filtCut=CLAMP(chan[i].filtCut,0,0xfff);
updateFilter(i);
}
}
if (chan[i].std.vol.had) {
chan[i].outVol=VOL_SCALE_LINEAR(chan[i].vol&15,MIN(15,chan[i].std.vol.val),15);
rWrite(i*7+3,(chan[i].duty>>8) | (chan[i].outVol << 4));
}
if (NEW_ARP_STRAT) {
chan[i].handleArp();
} else if (chan[i].std.arp.had) {
if (!chan[i].inPorta) {
chan[i].baseFreq=NOTE_FREQUENCY(parent->calcArp(chan[i].note,chan[i].std.arp.val));
}
chan[i].freqChanged=true;
}
if (chan[i].std.duty.had) {
DivInstrument* ins=parent->getIns(chan[i].ins,DIV_INS_SID2);
if (ins->c64.dutyIsAbs) {
chan[i].duty=chan[i].std.duty.val;
} else {
chan[i].duty-=chan[i].std.duty.val;
}
chan[i].duty&=4095;
rWrite(i*7+2,chan[i].duty&0xff);
rWrite(i*7+3,(chan[i].duty>>8) | (chan[i].outVol << 4));
}
if (chan[i].std.wave.had) {
chan[i].wave=chan[i].std.wave.val;
rWrite(i*7+4,(chan[i].wave<<4)|0|(chan[i].ring<<2)|(chan[i].sync<<1)|(int)(chan[i].active && chan[i].gate));
chan[i].freqChanged=true; //to update freq (if only noise was enabled/disabled)
}
if (chan[i].std.fms.had) {
chan[i].noise_mode=chan[i].std.fms.val;
rWrite(0x1e, (chan[0].noise_mode) | (chan[1].noise_mode << 2) | (chan[2].noise_mode << 4) | ((chan[0].freq >> 16) << 6) | ((chan[1].freq >> 16) << 7));
chan[i].freqChanged=true; //to update freq (if only noise was enabled and periodic noise mode is set)
}
if (chan[i].std.ams.had) {
chan[i].mix_mode=chan[i].std.ams.val;
rWrite(0x1f, (chan[0].mix_mode) | (chan[1].mix_mode << 2) | (chan[2].mix_mode << 4) | ((chan[2].freq >> 16) << 6));
}
if (chan[i].std.pitch.had) {
if (chan[i].std.pitch.mode) {
chan[i].pitch2+=chan[i].std.pitch.val;
CLAMP_VAR(chan[i].pitch2,-65535,65535);
} else {
chan[i].pitch2=chan[i].std.pitch.val;
}
chan[i].freqChanged=true;
}
if (chan[i].std.alg.had) { // new cutoff macro
DivInstrument* ins=parent->getIns(chan[i].ins,DIV_INS_SID2);
if (ins->c64.filterIsAbs) {
chan[i].filtCut=MIN(4095,chan[i].std.alg.val);
} else {
chan[i].filtCut+=chan[i].std.alg.val;
if (chan[i].filtCut > 4095) chan[i].filtCut = 4095;
if (chan[i].filtCut<0) chan[i].filtCut=0;
}
willUpdateFilter=true;
}
if (chan[i].std.ex1.had) {
chan[i].filtControl=chan[i].std.ex1.val&15;
willUpdateFilter=true;
}
if (chan[i].std.ex2.had) {
chan[i].filtRes=chan[i].std.ex2.val&255;
willUpdateFilter=true;
}
if (chan[i].std.ex3.had) {
chan[i].filter=(chan[i].std.ex3.val&1);
willUpdateFilter=true;
}
if (chan[i].std.ex4.had) {
chan[i].gate=chan[i].std.ex4.val&1;
chan[i].sync=chan[i].std.ex4.val&2;
chan[i].ring=chan[i].std.ex4.val&4;
chan[i].freqChanged=true;
rWrite(i*7+4,(chan[i].wave<<4)|0|(chan[i].ring<<2)|(chan[i].sync<<1)|(int)(chan[i].active && chan[i].gate));
}
if (chan[i].std.phaseReset.had) {
chan[i].test=(chan[i].std.phaseReset.val&1);
rWrite(i*7+4,(chan[i].wave<<4)|(chan[i].test << 3)|(chan[i].ring<<2)|(chan[i].sync<<1)|(int)(chan[i].active && chan[i].gate));
rWrite(i*7+4,(chan[i].wave<<4)|0|(chan[i].ring<<2)|(chan[i].sync<<1)|(int)(chan[i].active && chan[i].gate));
chan[i].test = false;
}
if (chan[i].std.ex5.had) {
chan[i].attack=chan[i].std.ex5.val&15;
rWrite(i*7+5,(chan[i].attack<<4)|(chan[i].decay));
}
if (chan[i].std.ex6.had) {
chan[i].decay=chan[i].std.ex6.val&15;
rWrite(i*7+5,(chan[i].attack<<4)|(chan[i].decay));
}
if (chan[i].std.ex7.had) {
chan[i].sustain=chan[i].std.ex7.val&15;
rWrite(i*7+6,(chan[i].sustain<<4)|(chan[i].release));
}
if (chan[i].std.ex8.had) {
chan[i].release=chan[i].std.ex8.val&15;
rWrite(i*7+6,(chan[i].sustain<<4)|(chan[i].release));
}
if (chan[i].freqChanged || chan[i].keyOn || chan[i].keyOff) {
chan[i].freq=parent->calcFreq(chan[i].baseFreq,chan[i].pitch,chan[i].fixedArp?chan[i].baseNoteOverride:chan[i].arpOff,chan[i].fixedArp,false,8,chan[i].pitch2,chipClock,CHIP_FREQBASE);
if (chan[i].freq<0) chan[i].freq=0;
if (chan[i].freq>0x1ffff) chan[i].freq=0x1ffff;
if (chan[i].keyOn)
{
if(!chan[i].resetMask)
{
chan[i].gate = true;
rWrite(i*7+4,(chan[i].wave<<4)|0|(chan[i].ring<<2)|(chan[i].sync<<1)|(0));
rWrite(i*7+4,(chan[i].wave<<4)|0|(chan[i].ring<<2)|(chan[i].sync<<1)|(chan[i].gate?1:0));
rWrite(i*7+5,(chan[i].attack<<4)|(chan[i].decay));
rWrite(i*7+6,(chan[i].sustain<<4)|(chan[i].release));
}
rWrite(i*7+3, (chan[i].duty>>8) | (isMuted[i] ? 0 : (chan[i].outVol << 4))); //set volume
rWrite(0x1e, (chan[0].noise_mode) | (chan[1].noise_mode << 2) | (chan[2].noise_mode << 4) | ((chan[0].freq >> 16) << 6) | ((chan[1].freq >> 16) << 7));
rWrite(0x1f, (chan[0].mix_mode) | (chan[1].mix_mode << 2) | (chan[2].mix_mode << 4) | ((chan[2].freq >> 16) << 6));
}
if (chan[i].keyOff)
{
chan[i].gate = false;
rWrite(i*7+5,(chan[i].attack<<4)|(chan[i].decay));
rWrite(i*7+6,(chan[i].sustain<<4)|(chan[i].release));
rWrite(i*7+4,(chan[i].wave<<4)|0|(chan[i].ring<<2)|(chan[i].sync<<1)|0);
}
if(chan[i].wave == 0x8) //if we have noise (noise only, since tone frequency would be wrong)
{
if(chan[i].noise_mode == 1) //1st short noise
{
chan[i].freq = (int)((double)chan[i].freq * 523.25 / 349.0); //these numbers and later determined by spectrum analyzer peak of looped noise signal at known frequency (frequency known for tone that would play if tone wave was enabled)
}
if(chan[i].noise_mode == 2) //2nd short noise
{
chan[i].freq = (int)((double)chan[i].freq * 523.25 / 270.0);
}
if(chan[i].noise_mode == 3) //3rd short noise
{
chan[i].freq = (int)((double)chan[i].freq * 523.25 / 133.0);
}
}
if (chan[i].freq<0) chan[i].freq=0;
if (chan[i].freq>0x1ffff) chan[i].freq=0x1ffff;
rWrite(i*7,chan[i].freq&0xff);
rWrite(i*7+1,chan[i].freq>>8);
rWrite(0x1e, (chan[0].noise_mode) | (chan[1].noise_mode << 2) | (chan[2].noise_mode << 4) | ((chan[0].freq >> 16) << 6) | ((chan[1].freq >> 16) << 7));
rWrite(0x1f, (chan[0].mix_mode) | (chan[1].mix_mode << 2) | (chan[2].mix_mode << 4) | ((chan[2].freq >> 16) << 6));
if (chan[i].keyOn) chan[i].keyOn=false;
if (chan[i].keyOff) chan[i].keyOff=false;
chan[i].freqChanged=false;
}
if (willUpdateFilter) updateFilter(i);
}
}
int DivPlatformSID2::dispatch(DivCommand c) {
if (c.chan>2) return 0;
switch (c.cmd) {
case DIV_CMD_NOTE_ON: {
DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_SID2);
if (c.value!=DIV_NOTE_NULL) {
chan[c.chan].baseFreq=NOTE_FREQUENCY(c.value);
chan[c.chan].freqChanged=true;
chan[c.chan].note=c.value;
}
chan[c.chan].active=true;
chan[c.chan].keyOn=true;
chan[c.chan].test=false;
if (((chan[c.chan].insChanged || chan[c.chan].resetDuty || ins->std.waveMacro.len>0) && ins->c64.resetDuty) || chan[c.chan].resetDuty) {
chan[c.chan].duty=ins->c64.duty;
rWrite(c.chan*7+2,chan[c.chan].duty&0xff);
rWrite(c.chan*7+3,(chan[c.chan].duty>>8) | (chan[c.chan].outVol << 4));
}
if (chan[c.chan].insChanged) {
chan[c.chan].wave=(ins->c64.noiseOn<<3)|(ins->c64.pulseOn<<2)|(ins->c64.sawOn<<1)|(int)(ins->c64.triOn);
chan[c.chan].attack=ins->c64.a;
chan[c.chan].decay=(ins->c64.s==15)?0:ins->c64.d;
chan[c.chan].sustain=ins->c64.s;
chan[c.chan].release=ins->c64.r;
chan[c.chan].ring=ins->c64.ringMod;
chan[c.chan].sync=ins->c64.oscSync;
chan[c.chan].noise_mode = ins->sid2.noiseMode;
chan[c.chan].mix_mode = ins->sid2.mixMode;
}
if (chan[c.chan].insChanged || chan[c.chan].resetFilter) {
chan[c.chan].filter=ins->c64.toFilter;
if (ins->c64.initFilter) {
chan[c.chan].filtCut=ins->c64.cut;
chan[c.chan].filtRes=ins->c64.res;
chan[c.chan].filtControl=(int)(ins->c64.lp)|(ins->c64.bp<<1)|(ins->c64.hp<<2);
}
updateFilter(c.chan);
}
if (chan[c.chan].insChanged) {
chan[c.chan].insChanged=false;
}
if (keyPriority) {
if (chanOrder[1]==c.chan) {
chanOrder[1]=chanOrder[2];
chanOrder[2]=c.chan;
} else if (chanOrder[0]==c.chan) {
chanOrder[0]=chanOrder[1];
chanOrder[1]=chanOrder[2];
chanOrder[2]=c.chan;
}
}
chan[c.chan].macroInit(ins);
break;
}
case DIV_CMD_NOTE_OFF:
chan[c.chan].active=false;
chan[c.chan].keyOff=true;
chan[c.chan].keyOn=false;
//chan[c.chan].macroInit(NULL);
break;
case DIV_CMD_NOTE_OFF_ENV:
chan[c.chan].active=false;
chan[c.chan].keyOff=true;
chan[c.chan].keyOn=false;
chan[c.chan].std.release();
break;
case DIV_CMD_ENV_RELEASE:
chan[c.chan].std.release();
break;
case DIV_CMD_INSTRUMENT:
if (chan[c.chan].ins!=c.value || c.value2==1) {
chan[c.chan].insChanged=true;
chan[c.chan].ins=c.value;
}
break;
case DIV_CMD_VOLUME:
if (chan[c.chan].vol!=c.value) {
chan[c.chan].vol=c.value;
if (!chan[c.chan].std.vol.has) {
chan[c.chan].outVol=c.value;
chan[c.chan].vol=chan[c.chan].outVol;
rWrite(c.chan*7+3,(chan[c.chan].duty>>8) | (chan[c.chan].vol << 4));
}
}
break;
case DIV_CMD_GET_VOLUME:
if (chan[c.chan].std.vol.has) {
return chan[c.chan].vol;
}
return chan[c.chan].outVol;
break;
case DIV_CMD_PITCH:
chan[c.chan].pitch=c.value;
chan[c.chan].freqChanged=true;
break;
case DIV_CMD_NOTE_PORTA: {
int destFreq=NOTE_FREQUENCY(c.value2);
bool return2=false;
if (destFreq>chan[c.chan].baseFreq) {
chan[c.chan].baseFreq+=c.value;
if (chan[c.chan].baseFreq>=destFreq) {
chan[c.chan].baseFreq=destFreq;
return2=true;
}
} else {
chan[c.chan].baseFreq-=c.value;
if (chan[c.chan].baseFreq<=destFreq) {
chan[c.chan].baseFreq=destFreq;
return2=true;
}
}
chan[c.chan].freqChanged=true;
if (return2) {
chan[c.chan].inPorta=false;
return 2;
}
break;
}
case DIV_CMD_C64_FINE_DUTY:
chan[c.chan].duty=c.value;
rWrite(c.chan*7+2,chan[c.chan].duty&0xff);
rWrite(c.chan*7+3,(chan[c.chan].duty>>8) | (chan[c.chan].outVol << 4));
break;
case DIV_CMD_WAVE:
chan[c.chan].wave=c.value;
rWrite(c.chan*7+4,(chan[c.chan].wave<<4)|0|(chan[c.chan].ring<<2)|(chan[c.chan].sync<<1)|(int)(chan[c.chan].active && chan[c.chan].gate));
chan[c.chan].freqChanged=true;
break;
case DIV_CMD_LEGATO:
chan[c.chan].baseFreq=NOTE_FREQUENCY(c.value+((HACKY_LEGATO_MESS)?(chan[c.chan].std.arp.val):(0)));
chan[c.chan].freqChanged=true;
chan[c.chan].note=c.value;
break;
case DIV_CMD_PRE_PORTA:
if (chan[c.chan].active && c.value2) {
if (parent->song.resetMacroOnPorta || parent->song.preNoteNoEffect) {
chan[c.chan].macroInit(parent->getIns(chan[c.chan].ins,DIV_INS_SID2));
chan[c.chan].keyOn=true;
}
}
if (!chan[c.chan].inPorta && c.value && !parent->song.brokenPortaArp && chan[c.chan].std.arp.will && !NEW_ARP_STRAT) chan[c.chan].baseFreq=NOTE_FREQUENCY(chan[c.chan].note);
chan[c.chan].inPorta=c.value;
break;
case DIV_CMD_GET_VOLMAX:
return 15;
break;
case DIV_CMD_C64_FINE_CUTOFF:
chan[c.chan].filtCut=c.value;
updateFilter(c.chan);
break;
case DIV_CMD_C64_RESONANCE:
if (c.value>255) c.value=255;
chan[c.chan].filtRes=c.value;
updateFilter(c.chan);
break;
case DIV_CMD_C64_FILTER_MODE:
chan[c.chan].filtControl=c.value&7;
updateFilter(c.chan);
break;
case DIV_CMD_C64_RESET_MASK:
chan[c.chan].resetMask=c.value;
break;
case DIV_CMD_C64_FILTER_RESET:
if (c.value&15) {
DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_SID2);
if (ins->c64.initFilter) {
chan[c.chan].filtCut=ins->c64.cut;
updateFilter(c.chan);
}
}
chan[c.chan].resetFilter=c.value>>4;
break;
case DIV_CMD_C64_DUTY_RESET:
if (c.value&15) {
DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_SID2);
chan[c.chan].duty=ins->c64.duty;
rWrite(c.chan*7+2,chan[c.chan].duty&0xff);
rWrite(c.chan*7+3,(chan[c.chan].duty>>8) | (chan[c.chan].outVol << 4));
}
chan[c.chan].resetDuty=c.value>>4;
break;
case DIV_CMD_C64_EXTENDED:
switch (c.value>>4) {
case 0:
chan[c.chan].attack=c.value&15;
rWrite(c.chan*7+5,(chan[c.chan].attack<<4)|(chan[c.chan].decay));
break;
case 1:
chan[c.chan].decay=c.value&15;
rWrite(c.chan*7+5,(chan[c.chan].attack<<4)|(chan[c.chan].decay));
break;
case 2:
chan[c.chan].sustain=c.value&15;
rWrite(c.chan*7+6,(chan[c.chan].sustain<<4)|(chan[c.chan].release));
break;
case 3:
chan[c.chan].release=c.value&15;
rWrite(c.chan*7+6,(chan[c.chan].sustain<<4)|(chan[c.chan].release));
break;
case 4:
chan[c.chan].ring=c.value;
rWrite(c.chan*7+4,(chan[c.chan].wave<<4)|0|(chan[c.chan].ring<<2)|(chan[c.chan].sync<<1)|(int)(chan[c.chan].active && chan[c.chan].gate));
break;
case 5:
chan[c.chan].sync=c.value;
rWrite(c.chan*7+4,(chan[c.chan].wave<<4)|0|(chan[c.chan].ring<<2)|(chan[c.chan].sync<<1)|(int)(chan[c.chan].active && chan[c.chan].gate));
break;
case 6:
chan[c.chan].filtControl = c.value;
updateFilter(c.chan);
break;
case 7:
chan[c.chan].mix_mode=(c.value & 3);
rWrite(0x1f, (chan[0].mix_mode) | (chan[1].mix_mode << 2) | (chan[2].mix_mode << 4) | ((chan[2].freq >> 16) << 6));
break;
case 8:
chan[c.chan].noise_mode=(c.value & 3);
chan[c.chan].freqChanged = true;
rWrite(0x1e, (chan[0].noise_mode) | (chan[1].noise_mode << 2) | (chan[2].noise_mode << 4) | ((chan[0].freq >> 16) << 6) | ((chan[1].freq >> 16) << 7));
break;
case 9: //phase reset
chan[c.chan].test=true;
rWrite(c.chan*7+4,(chan[c.chan].wave<<4)|(chan[c.chan].test << 3)|(chan[c.chan].ring<<2)|(chan[c.chan].sync<<1)|(int)(chan[c.chan].active && chan[c.chan].gate));
rWrite(c.chan*7+4,(chan[c.chan].wave<<4)|0|(chan[c.chan].ring<<2)|(chan[c.chan].sync<<1)|(int)(chan[c.chan].active && chan[c.chan].gate));
chan[c.chan].test = false;
break;
case 0xa: //envelope on/off
chan[c.chan].gate=(c.value & 1);
rWrite(c.chan*7+4,(chan[c.chan].wave<<4)|0|(chan[c.chan].ring<<2)|(chan[c.chan].sync<<1)|(int)(chan[c.chan].active && chan[c.chan].gate));
break;
case 0xb: //filter on/off
chan[c.chan].filter=(c.value & 1);
updateFilter(c.chan);
break;
}
break;
case DIV_CMD_C64_PW_SLIDE:
chan[c.chan].pw_slide=c.value*c.value2;
break;
case DIV_CMD_C64_CUTOFF_SLIDE:
chan[c.chan].cutoff_slide=c.value*c.value2;
break;
case DIV_CMD_MACRO_OFF:
chan[c.chan].std.mask(c.value,true);
break;
case DIV_CMD_MACRO_ON:
chan[c.chan].std.mask(c.value,false);
break;
case DIV_CMD_MACRO_RESTART:
chan[c.chan].std.restart(c.value);
break;
default:
break;
}
return 1;
}
void DivPlatformSID2::muteChannel(int ch, bool mute) {
isMuted[ch]=mute;
sid2->set_is_muted(ch,mute);
}
void DivPlatformSID2::forceIns() {
for (int i=0; i<3; i++) {
chan[i].insChanged=true;
if (chan[i].active) {
chan[i].keyOn=true;
chan[i].freqChanged=true;
}
updateFilter(i);
}
}
void DivPlatformSID2::notifyInsChange(int ins) {
for (int i=0; i<3; i++) {
if (chan[i].ins==ins) {
chan[i].insChanged=true;
}
}
}
void DivPlatformSID2::notifyInsDeletion(void* ins) {
for (int i=0; i<3; i++) {
chan[i].std.notifyInsDeletion((DivInstrument*)ins);
}
}
void* DivPlatformSID2::getChanState(int ch) {
return &chan[ch];
}
DivMacroInt* DivPlatformSID2::getChanMacroInt(int ch) {
return &chan[ch].std;
}
void DivPlatformSID2::getPaired(int ch, std::vector<DivChannelPair>& ret) {
if (chan[ch].ring) {
if (ch==0) {
ret.push_back(DivChannelPair(_("ring"),2));
} else {
ret.push_back(DivChannelPair(_("ring"),(ch-1)%3));
}
}
if (chan[ch].sync) {
if (ch==0) {
ret.push_back(DivChannelPair(_("sync"),2));
} else {
ret.push_back(DivChannelPair(_("sync"),(ch-1)%3));
}
}
}
DivChannelModeHints DivPlatformSID2::getModeHints(int ch) {
DivChannelModeHints ret;
ret.count=1;
ret.hint[0]=ICON_FA_BELL_SLASH_O;
ret.type[0]=0;
if (ch==2 && (chan[ch].filtControl & 8)) {
ret.type[0]=7;
} else if (!chan[ch].gate) {
ret.type[0]=4;
}
return ret;
}
DivDispatchOscBuffer* DivPlatformSID2::getOscBuffer(int ch) {
return oscBuf[ch];
}
unsigned char* DivPlatformSID2::getRegisterPool() {
return regPool;
}
int DivPlatformSID2::getRegisterPoolSize() {
return 32;
}
bool DivPlatformSID2::getDCOffRequired() {
return true;
}
bool DivPlatformSID2::getWantPreNote() {
return true;
}
bool DivPlatformSID2::isVolGlobal() {
return true;
}
float DivPlatformSID2::getPostAmp() {
return 1.0f;
}
void DivPlatformSID2::reset() {
while (!writes.empty()) writes.pop();
for (int i=0; i<3; i++) {
chan[i]=DivPlatformSID2::Channel();
chan[i].std.setEngine(parent);
fakeLow[i]=0;
fakeBand[i]=0;
chan[i].vol = 15;
chan[i].filtControl = 7;
chan[i].filtRes = 0;
chan[i].filtCut = 4095;
chan[i].noise_mode = 0;
rWrite(0x3 + 7 * i,0xf0);
chan[i].cutoff_slide = 0;
chan[i].pw_slide = 0;
}
sid2->reset();
memset(regPool,0,32);
chanOrder[0]=0;
chanOrder[1]=1;
chanOrder[2]=2;
}
void DivPlatformSID2::poke(unsigned int addr, unsigned short val) {
rWrite(addr,val);
}
void DivPlatformSID2::poke(std::vector<DivRegWrite>& wlist) {
for (DivRegWrite& i: wlist) rWrite(i.addr,i.val);
}
void DivPlatformSID2::setFlags(const DivConfig& flags) {
switch (flags.getInt("clockSel",0)) {
case 0x0: // NTSC C64
chipClock=COLOR_NTSC*2.0/7.0;
break;
case 0x1: // PAL C64
chipClock=COLOR_PAL*2.0/9.0;
break;
case 0x2: // SSI 2001
default:
chipClock=14318180.0/16.0;
break;
}
CHECK_CUSTOM_CLOCK;
rate=chipClock;
for (int i=0; i<3; i++) {
oscBuf[i]->rate=rate/16;
}
keyPriority=flags.getBool("keyPriority",true);
// init fake filter table
// taken from dSID
double cutRatio=-2.0*3.14*(12500.0/256.0)/(double)oscBuf[0]->rate;
for (int i=0; i<4095; i++)
{
double c=(double)i/16.0+0.2;
c=1-exp(c*cutRatio);
fakeCutTable[i]=c;
}
}
int DivPlatformSID2::init(DivEngine* p, int channels, int sugRate, const DivConfig& flags) {
parent=p;
dumpWrites=false;
skipRegisterWrites=false;
needInitTables=true;
writeOscBuf=0;
for (int i=0; i<3; i++)
{
isMuted[i]=false;
oscBuf[i]=new DivDispatchOscBuffer;
}
sid2=new SID2;
sid2->set_chip_model(MOS8580_2);
setFlags(flags);
reset();
return 3;
}
void DivPlatformSID2::quit() {
for (int i=0; i<3; i++)
{
delete oscBuf[i];
}
if (sid2!=NULL) delete sid2;
}
DivPlatformSID2::~DivPlatformSID2() {
}