187 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			187 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* This file was automatically generated --- DO NOT EDIT */
 | |
| /* Generated on Tue Sep 14 10:45:57 EDT 2021 */
 | |
| 
 | |
| #include "dft/codelet-dft.h"
 | |
| 
 | |
| #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 5 -name t3bv_5 -include dft/simd/t3b.h -sign 1 */
 | |
| 
 | |
| /*
 | |
|  * This function contains 22 FP additions, 23 FP multiplications,
 | |
|  * (or, 13 additions, 14 multiplications, 9 fused multiply/add),
 | |
|  * 24 stack variables, 4 constants, and 10 memory accesses
 | |
|  */
 | |
| #include "dft/simd/t3b.h"
 | |
| 
 | |
| static void t3bv_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
 | |
|      DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
 | |
|      DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
 | |
|      DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  R *x;
 | |
| 	  x = ii;
 | |
| 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 4)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 4), MAKE_VOLATILE_STRIDE(5, rs)) {
 | |
| 	       V T2, T5, T6, Ta;
 | |
| 	       T2 = LDW(&(W[0]));
 | |
| 	       T5 = LDW(&(W[TWVL * 2]));
 | |
| 	       T6 = VZMUL(T2, T5);
 | |
| 	       Ta = VZMULJ(T2, T5);
 | |
| 	       {
 | |
| 		    V T1, Tk, Tl, T9, Tf, Tg;
 | |
| 		    T1 = LD(&(x[0]), ms, &(x[0]));
 | |
| 		    {
 | |
| 			 V T4, Te, T8, Tc;
 | |
| 			 {
 | |
| 			      V T3, Td, T7, Tb;
 | |
| 			      T3 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
 | |
| 			      T4 = VZMUL(T2, T3);
 | |
| 			      Td = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
 | |
| 			      Te = VZMUL(T5, Td);
 | |
| 			      T7 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
 | |
| 			      T8 = VZMUL(T6, T7);
 | |
| 			      Tb = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
 | |
| 			      Tc = VZMUL(Ta, Tb);
 | |
| 			 }
 | |
| 			 Tk = VSUB(T4, T8);
 | |
| 			 Tl = VSUB(Tc, Te);
 | |
| 			 T9 = VADD(T4, T8);
 | |
| 			 Tf = VADD(Tc, Te);
 | |
| 			 Tg = VADD(T9, Tf);
 | |
| 		    }
 | |
| 		    ST(&(x[0]), VADD(T1, Tg), ms, &(x[0]));
 | |
| 		    {
 | |
| 			 V Tm, To, Tj, Tn, Th, Ti;
 | |
| 			 Tm = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tl, Tk));
 | |
| 			 To = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tk, Tl));
 | |
| 			 Th = VFNMS(LDK(KP250000000), Tg, T1);
 | |
| 			 Ti = VSUB(T9, Tf);
 | |
| 			 Tj = VFMA(LDK(KP559016994), Ti, Th);
 | |
| 			 Tn = VFNMS(LDK(KP559016994), Ti, Th);
 | |
| 			 ST(&(x[WS(rs, 1)]), VFMAI(Tm, Tj), ms, &(x[WS(rs, 1)]));
 | |
| 			 ST(&(x[WS(rs, 3)]), VFMAI(To, Tn), ms, &(x[WS(rs, 1)]));
 | |
| 			 ST(&(x[WS(rs, 4)]), VFNMSI(Tm, Tj), ms, &(x[0]));
 | |
| 			 ST(&(x[WS(rs, 2)]), VFNMSI(To, Tn), ms, &(x[0]));
 | |
| 		    }
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
|      VLEAVE();
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      VTW(0, 1),
 | |
|      VTW(0, 3),
 | |
|      { TW_NEXT, VL, 0 }
 | |
| };
 | |
| 
 | |
| static const ct_desc desc = { 5, XSIMD_STRING("t3bv_5"), twinstr, &GENUS, { 13, 14, 9, 0 }, 0, 0, 0 };
 | |
| 
 | |
| void XSIMD(codelet_t3bv_5) (planner *p) {
 | |
|      X(kdft_dit_register) (p, t3bv_5, &desc);
 | |
| }
 | |
| #else
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 5 -name t3bv_5 -include dft/simd/t3b.h -sign 1 */
 | |
| 
 | |
| /*
 | |
|  * This function contains 22 FP additions, 18 FP multiplications,
 | |
|  * (or, 19 additions, 15 multiplications, 3 fused multiply/add),
 | |
|  * 24 stack variables, 4 constants, and 10 memory accesses
 | |
|  */
 | |
| #include "dft/simd/t3b.h"
 | |
| 
 | |
| static void t3bv_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
 | |
|      DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
 | |
|      DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
 | |
|      DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  R *x;
 | |
| 	  x = ii;
 | |
| 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 4)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 4), MAKE_VOLATILE_STRIDE(5, rs)) {
 | |
| 	       V T1, T4, T5, T9;
 | |
| 	       T1 = LDW(&(W[0]));
 | |
| 	       T4 = LDW(&(W[TWVL * 2]));
 | |
| 	       T5 = VZMUL(T1, T4);
 | |
| 	       T9 = VZMULJ(T1, T4);
 | |
| 	       {
 | |
| 		    V Tj, T8, Te, Tg, Th, Tk;
 | |
| 		    Tj = LD(&(x[0]), ms, &(x[0]));
 | |
| 		    {
 | |
| 			 V T3, Td, T7, Tb;
 | |
| 			 {
 | |
| 			      V T2, Tc, T6, Ta;
 | |
| 			      T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
 | |
| 			      T3 = VZMUL(T1, T2);
 | |
| 			      Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
 | |
| 			      Td = VZMUL(T4, Tc);
 | |
| 			      T6 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
 | |
| 			      T7 = VZMUL(T5, T6);
 | |
| 			      Ta = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
 | |
| 			      Tb = VZMUL(T9, Ta);
 | |
| 			 }
 | |
| 			 T8 = VSUB(T3, T7);
 | |
| 			 Te = VSUB(Tb, Td);
 | |
| 			 Tg = VADD(T3, T7);
 | |
| 			 Th = VADD(Tb, Td);
 | |
| 			 Tk = VADD(Tg, Th);
 | |
| 		    }
 | |
| 		    ST(&(x[0]), VADD(Tj, Tk), ms, &(x[0]));
 | |
| 		    {
 | |
| 			 V Tf, Tn, Tm, To, Ti, Tl;
 | |
| 			 Tf = VBYI(VFMA(LDK(KP951056516), T8, VMUL(LDK(KP587785252), Te)));
 | |
| 			 Tn = VBYI(VFNMS(LDK(KP951056516), Te, VMUL(LDK(KP587785252), T8)));
 | |
| 			 Ti = VMUL(LDK(KP559016994), VSUB(Tg, Th));
 | |
| 			 Tl = VFNMS(LDK(KP250000000), Tk, Tj);
 | |
| 			 Tm = VADD(Ti, Tl);
 | |
| 			 To = VSUB(Tl, Ti);
 | |
| 			 ST(&(x[WS(rs, 1)]), VADD(Tf, Tm), ms, &(x[WS(rs, 1)]));
 | |
| 			 ST(&(x[WS(rs, 3)]), VSUB(To, Tn), ms, &(x[WS(rs, 1)]));
 | |
| 			 ST(&(x[WS(rs, 4)]), VSUB(Tm, Tf), ms, &(x[0]));
 | |
| 			 ST(&(x[WS(rs, 2)]), VADD(Tn, To), ms, &(x[0]));
 | |
| 		    }
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
|      VLEAVE();
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      VTW(0, 1),
 | |
|      VTW(0, 3),
 | |
|      { TW_NEXT, VL, 0 }
 | |
| };
 | |
| 
 | |
| static const ct_desc desc = { 5, XSIMD_STRING("t3bv_5"), twinstr, &GENUS, { 19, 15, 3, 0 }, 0, 0, 0 };
 | |
| 
 | |
| void XSIMD(codelet_t3bv_5) (planner *p) {
 | |
|      X(kdft_dit_register) (p, t3bv_5, &desc);
 | |
| }
 | |
| #endif
 | 
