263 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			263 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* This file was automatically generated --- DO NOT EDIT */
 | |
| /* Generated on Tue Sep 14 10:46:01 EDT 2021 */
 | |
| 
 | |
| #include "dft/codelet-dft.h"
 | |
| 
 | |
| #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_twidsq_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1bv_4 -include dft/simd/q1b.h -sign 1 */
 | |
| 
 | |
| /*
 | |
|  * This function contains 44 FP additions, 32 FP multiplications,
 | |
|  * (or, 36 additions, 24 multiplications, 8 fused multiply/add),
 | |
|  * 22 stack variables, 0 constants, and 32 memory accesses
 | |
|  */
 | |
| #include "dft/simd/q1b.h"
 | |
| 
 | |
| static void q1bv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  R *x;
 | |
| 	  x = ii;
 | |
| 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(8, vs)) {
 | |
| 	       V T3, T9, TA, TG, TD, TH, T6, Ta, Te, Tk, Tp, Tv, Ts, Tw, Th;
 | |
| 	       V Tl;
 | |
| 	       {
 | |
| 		    V T1, T2, Ty, Tz;
 | |
| 		    T1 = LD(&(x[0]), ms, &(x[0]));
 | |
| 		    T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
 | |
| 		    T3 = VSUB(T1, T2);
 | |
| 		    T9 = VADD(T1, T2);
 | |
| 		    Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));
 | |
| 		    Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));
 | |
| 		    TA = VSUB(Ty, Tz);
 | |
| 		    TG = VADD(Ty, Tz);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    V TB, TC, T4, T5;
 | |
| 		    TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
 | |
| 		    TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
 | |
| 		    TD = VSUB(TB, TC);
 | |
| 		    TH = VADD(TB, TC);
 | |
| 		    T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
 | |
| 		    T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
 | |
| 		    T6 = VSUB(T4, T5);
 | |
| 		    Ta = VADD(T4, T5);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    V Tc, Td, Tn, To;
 | |
| 		    Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));
 | |
| 		    Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));
 | |
| 		    Te = VSUB(Tc, Td);
 | |
| 		    Tk = VADD(Tc, Td);
 | |
| 		    Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));
 | |
| 		    To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));
 | |
| 		    Tp = VSUB(Tn, To);
 | |
| 		    Tv = VADD(Tn, To);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    V Tq, Tr, Tf, Tg;
 | |
| 		    Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
 | |
| 		    Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
 | |
| 		    Ts = VSUB(Tq, Tr);
 | |
| 		    Tw = VADD(Tq, Tr);
 | |
| 		    Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
 | |
| 		    Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
 | |
| 		    Th = VSUB(Tf, Tg);
 | |
| 		    Tl = VADD(Tf, Tg);
 | |
| 	       }
 | |
| 	       ST(&(x[0]), VADD(T9, Ta), ms, &(x[0]));
 | |
| 	       ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)]));
 | |
| 	       ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0]));
 | |
| 	       ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)]));
 | |
| 	       {
 | |
| 		    V T7, Ti, Tt, TE;
 | |
| 		    T7 = BYTW(&(W[TWVL * 4]), VFNMSI(T6, T3));
 | |
| 		    ST(&(x[WS(vs, 3)]), T7, ms, &(x[WS(vs, 3)]));
 | |
| 		    Ti = BYTW(&(W[TWVL * 4]), VFNMSI(Th, Te));
 | |
| 		    ST(&(x[WS(vs, 3) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
 | |
| 		    Tt = BYTW(&(W[TWVL * 4]), VFNMSI(Ts, Tp));
 | |
| 		    ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 3)]));
 | |
| 		    TE = BYTW(&(W[TWVL * 4]), VFNMSI(TD, TA));
 | |
| 		    ST(&(x[WS(vs, 3) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
 | |
| 	       }
 | |
| 	       {
 | |
| 		    V T8, Tj, Tu, TF;
 | |
| 		    T8 = BYTW(&(W[0]), VFMAI(T6, T3));
 | |
| 		    ST(&(x[WS(vs, 1)]), T8, ms, &(x[WS(vs, 1)]));
 | |
| 		    Tj = BYTW(&(W[0]), VFMAI(Th, Te));
 | |
| 		    ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
 | |
| 		    Tu = BYTW(&(W[0]), VFMAI(Ts, Tp));
 | |
| 		    ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 1)]));
 | |
| 		    TF = BYTW(&(W[0]), VFMAI(TD, TA));
 | |
| 		    ST(&(x[WS(vs, 1) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
 | |
| 	       }
 | |
| 	       {
 | |
| 		    V Tb, Tm, Tx, TI;
 | |
| 		    Tb = BYTW(&(W[TWVL * 2]), VSUB(T9, Ta));
 | |
| 		    ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)]));
 | |
| 		    Tm = BYTW(&(W[TWVL * 2]), VSUB(Tk, Tl));
 | |
| 		    ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
 | |
| 		    Tx = BYTW(&(W[TWVL * 2]), VSUB(Tv, Tw));
 | |
| 		    ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)]));
 | |
| 		    TI = BYTW(&(W[TWVL * 2]), VSUB(TG, TH));
 | |
| 		    ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
|      VLEAVE();
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      VTW(0, 1),
 | |
|      VTW(0, 2),
 | |
|      VTW(0, 3),
 | |
|      { TW_NEXT, VL, 0 }
 | |
| };
 | |
| 
 | |
| static const ct_desc desc = { 4, XSIMD_STRING("q1bv_4"), twinstr, &GENUS, { 36, 24, 8, 0 }, 0, 0, 0 };
 | |
| 
 | |
| void XSIMD(codelet_q1bv_4) (planner *p) {
 | |
|      X(kdft_difsq_register) (p, q1bv_4, &desc);
 | |
| }
 | |
| #else
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_twidsq_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1bv_4 -include dft/simd/q1b.h -sign 1 */
 | |
| 
 | |
| /*
 | |
|  * This function contains 44 FP additions, 24 FP multiplications,
 | |
|  * (or, 44 additions, 24 multiplications, 0 fused multiply/add),
 | |
|  * 22 stack variables, 0 constants, and 32 memory accesses
 | |
|  */
 | |
| #include "dft/simd/q1b.h"
 | |
| 
 | |
| static void q1bv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  R *x;
 | |
| 	  x = ii;
 | |
| 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs), MAKE_VOLATILE_STRIDE(8, vs)) {
 | |
| 	       V T3, T9, TA, TG, TD, TH, T6, Ta, Te, Tk, Tp, Tv, Ts, Tw, Th;
 | |
| 	       V Tl;
 | |
| 	       {
 | |
| 		    V T1, T2, Ty, Tz;
 | |
| 		    T1 = LD(&(x[0]), ms, &(x[0]));
 | |
| 		    T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
 | |
| 		    T3 = VSUB(T1, T2);
 | |
| 		    T9 = VADD(T1, T2);
 | |
| 		    Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));
 | |
| 		    Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));
 | |
| 		    TA = VSUB(Ty, Tz);
 | |
| 		    TG = VADD(Ty, Tz);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    V TB, TC, T4, T5;
 | |
| 		    TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
 | |
| 		    TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
 | |
| 		    TD = VBYI(VSUB(TB, TC));
 | |
| 		    TH = VADD(TB, TC);
 | |
| 		    T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
 | |
| 		    T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
 | |
| 		    T6 = VBYI(VSUB(T4, T5));
 | |
| 		    Ta = VADD(T4, T5);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    V Tc, Td, Tn, To;
 | |
| 		    Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));
 | |
| 		    Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));
 | |
| 		    Te = VSUB(Tc, Td);
 | |
| 		    Tk = VADD(Tc, Td);
 | |
| 		    Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));
 | |
| 		    To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));
 | |
| 		    Tp = VSUB(Tn, To);
 | |
| 		    Tv = VADD(Tn, To);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    V Tq, Tr, Tf, Tg;
 | |
| 		    Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
 | |
| 		    Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
 | |
| 		    Ts = VBYI(VSUB(Tq, Tr));
 | |
| 		    Tw = VADD(Tq, Tr);
 | |
| 		    Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
 | |
| 		    Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
 | |
| 		    Th = VBYI(VSUB(Tf, Tg));
 | |
| 		    Tl = VADD(Tf, Tg);
 | |
| 	       }
 | |
| 	       ST(&(x[0]), VADD(T9, Ta), ms, &(x[0]));
 | |
| 	       ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)]));
 | |
| 	       ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0]));
 | |
| 	       ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)]));
 | |
| 	       {
 | |
| 		    V T7, Ti, Tt, TE;
 | |
| 		    T7 = BYTW(&(W[TWVL * 4]), VSUB(T3, T6));
 | |
| 		    ST(&(x[WS(vs, 3)]), T7, ms, &(x[WS(vs, 3)]));
 | |
| 		    Ti = BYTW(&(W[TWVL * 4]), VSUB(Te, Th));
 | |
| 		    ST(&(x[WS(vs, 3) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
 | |
| 		    Tt = BYTW(&(W[TWVL * 4]), VSUB(Tp, Ts));
 | |
| 		    ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 3)]));
 | |
| 		    TE = BYTW(&(W[TWVL * 4]), VSUB(TA, TD));
 | |
| 		    ST(&(x[WS(vs, 3) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
 | |
| 	       }
 | |
| 	       {
 | |
| 		    V T8, Tj, Tu, TF;
 | |
| 		    T8 = BYTW(&(W[0]), VADD(T3, T6));
 | |
| 		    ST(&(x[WS(vs, 1)]), T8, ms, &(x[WS(vs, 1)]));
 | |
| 		    Tj = BYTW(&(W[0]), VADD(Te, Th));
 | |
| 		    ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
 | |
| 		    Tu = BYTW(&(W[0]), VADD(Tp, Ts));
 | |
| 		    ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 1)]));
 | |
| 		    TF = BYTW(&(W[0]), VADD(TA, TD));
 | |
| 		    ST(&(x[WS(vs, 1) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
 | |
| 	       }
 | |
| 	       {
 | |
| 		    V Tb, Tm, Tx, TI;
 | |
| 		    Tb = BYTW(&(W[TWVL * 2]), VSUB(T9, Ta));
 | |
| 		    ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)]));
 | |
| 		    Tm = BYTW(&(W[TWVL * 2]), VSUB(Tk, Tl));
 | |
| 		    ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
 | |
| 		    Tx = BYTW(&(W[TWVL * 2]), VSUB(Tv, Tw));
 | |
| 		    ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)]));
 | |
| 		    TI = BYTW(&(W[TWVL * 2]), VSUB(TG, TH));
 | |
| 		    ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
|      VLEAVE();
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      VTW(0, 1),
 | |
|      VTW(0, 2),
 | |
|      VTW(0, 3),
 | |
|      { TW_NEXT, VL, 0 }
 | |
| };
 | |
| 
 | |
| static const ct_desc desc = { 4, XSIMD_STRING("q1bv_4"), twinstr, &GENUS, { 44, 24, 0, 0 }, 0, 0, 0 };
 | |
| 
 | |
| void XSIMD(codelet_q1bv_4) (planner *p) {
 | |
|      X(kdft_difsq_register) (p, q1bv_4, &desc);
 | |
| }
 | |
| #endif
 | 
