furnace/src/engine/platform/amiga.cpp
tildearrow c009cb3536 dev112 - prepare for advanced arp macro
this new advanced arp macro offers more flexibility and reduces code duplication
it allows you to set each step of the macro to either relative or fixed mode
(instead of just one mode for the entire macro)

the UI is still a work in progress and doesn't work well

this change is big and may break things! further fixes incoming
2022-08-22 15:59:45 -05:00

471 lines
13 KiB
C++

/**
* Furnace Tracker - multi-system chiptune tracker
* Copyright (C) 2021-2022 tildearrow and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#define _USE_MATH_DEFINES
#include "amiga.h"
#include "../engine.h"
#include <math.h>
#define AMIGA_DIVIDER 8
#define CHIP_DIVIDER 16
const char* regCheatSheetAmiga[]={
"DMACON", "96",
"INTENA", "9A",
"ADKCON", "9E",
"AUD0LCH", "A0",
"AUD0LCL", "A2",
"AUD0LEN", "A4",
"AUD0PER", "A6",
"AUD0VOL", "A8",
"AUD0DAT", "AA",
"AUD1LCH", "B0",
"AUD1LCL", "B2",
"AUD1LEN", "B4",
"AUD1PER", "B6",
"AUD1VOL", "B8",
"AUD1DAT", "BA",
"AUD2LCH", "C0",
"AUD2LCL", "C2",
"AUD2LEN", "C4",
"AUD2PER", "C6",
"AUD2VOL", "C8",
"AUD2DAT", "CA",
"AUD3LCH", "D0",
"AUD3LCL", "D2",
"AUD3LEN", "D4",
"AUD3PER", "D6",
"AUD3VOL", "D8",
"AUD3DAT", "DA",
NULL
};
const char** DivPlatformAmiga::getRegisterSheet() {
return regCheatSheetAmiga;
}
#define writeAudDat(x) \
chan[i].audDat=x; \
if (i<3 && chan[i].useV) { \
chan[i+1].outVol=(unsigned char)chan[i].audDat^0x80; \
if (chan[i+1].outVol>64) chan[i+1].outVol=64; \
} \
if (i<3 && chan[i].useP) { \
chan[i+1].freq=(unsigned char)chan[i].audDat^0x80; \
if (chan[i+1].freq<AMIGA_DIVIDER) chan[i+1].freq=AMIGA_DIVIDER; \
}
void DivPlatformAmiga::acquire(short* bufL, short* bufR, size_t start, size_t len) {
static int outL, outR, output;
for (size_t h=start; h<start+len; h++) {
outL=0;
outR=0;
for (int i=0; i<4; i++) {
if (!chan[i].active) {
oscBuf[i]->data[oscBuf[i]->needle++]=0;
continue;
}
if (chan[i].useWave || (chan[i].sample>=0 && chan[i].sample<parent->song.sampleLen)) {
chan[i].audSub-=AMIGA_DIVIDER;
if (chan[i].audSub<0) {
if (chan[i].useWave) {
writeAudDat(chan[i].ws.output[chan[i].audPos++]^0x80);
if (chan[i].audPos>=(unsigned int)(chan[i].audLen<<1)) {
chan[i].audPos=0;
}
} else {
DivSample* s=parent->getSample(chan[i].sample);
if (s->samples>0) {
if (chan[i].audPos<s->samples) {
writeAudDat(s->data8[chan[i].audPos++]);
}
if (s->isLoopable() && chan[i].audPos>=MIN(131071,s->getEndPosition())) {
chan[i].audPos=s->loopStart;
} else if (chan[i].audPos>=MIN(131071,s->samples)) {
chan[i].sample=-1;
}
} else {
chan[i].sample=-1;
}
}
/*if (chan[i].freq<124) {
if (++chan[i].busClock>=512) {
unsigned int rAmount=(124-chan[i].freq)*2;
if (chan[i].audPos>=rAmount) {
chan[i].audPos-=rAmount;
}
chan[i].busClock=0;
}
}*/
if (bypassLimits) {
chan[i].audSub+=MAX(AMIGA_DIVIDER,chan[i].freq);
} else {
chan[i].audSub+=MAX(114,chan[i].freq);
}
}
}
if (!isMuted[i]) {
output=chan[i].audDat*chan[i].outVol;
if (i==0 || i==3) {
outL+=(output*sep1)>>7;
outR+=(output*sep2)>>7;
} else {
outL+=(output*sep2)>>7;
outR+=(output*sep1)>>7;
}
oscBuf[i]->data[oscBuf[i]->needle++]=output<<2;
} else {
oscBuf[i]->data[oscBuf[i]->needle++]=0;
}
}
filter[0][0]+=(filtConst*(outL-filter[0][0]))>>12;
filter[0][1]+=(filtConst*(filter[0][0]-filter[0][1]))>>12;
filter[1][0]+=(filtConst*(outR-filter[1][0]))>>12;
filter[1][1]+=(filtConst*(filter[1][0]-filter[1][1]))>>12;
bufL[h]=filter[0][1];
bufR[h]=filter[1][1];
}
}
void DivPlatformAmiga::tick(bool sysTick) {
for (int i=0; i<4; i++) {
chan[i].std.next();
if (chan[i].std.vol.had) {
chan[i].outVol=((chan[i].vol%65)*MIN(64,chan[i].std.vol.val))>>6;
}
double off=1.0;
if (!chan[i].useWave && chan[i].sample>=0 && chan[i].sample<parent->song.sampleLen) {
DivSample* s=parent->getSample(chan[i].sample);
if (s->centerRate<1) {
off=1.0;
} else {
off=8363.0/(double)s->centerRate;
}
}
if (chan[i].std.arp.had) {
// TODO: why the off mult? this may be a bug!
chan[i].baseFreq=round(off*NOTE_PERIODIC_NOROUND(parent->calcArp(chan[i].note,chan[i].std.arp.val)));
chan[i].freqChanged=true;
}
if (chan[i].useWave && chan[i].std.wave.had) {
if (chan[i].wave!=chan[i].std.wave.val || chan[i].ws.activeChanged()) {
chan[i].wave=chan[i].std.wave.val;
chan[i].ws.changeWave1(chan[i].wave);
if (!chan[i].keyOff) chan[i].keyOn=true;
}
}
if (chan[i].useWave && chan[i].active) {
chan[i].ws.tick();
}
if (chan[i].std.pitch.had) {
if (chan[i].std.pitch.mode) {
chan[i].pitch2+=chan[i].std.pitch.val;
CLAMP_VAR(chan[i].pitch2,-32768,32767);
} else {
chan[i].pitch2=chan[i].std.pitch.val;
}
chan[i].freqChanged=true;
}
if (chan[i].std.phaseReset.had) {
if (chan[i].std.phaseReset.val==1) {
chan[i].audPos=0;
}
}
if (chan[i].freqChanged || chan[i].keyOn || chan[i].keyOff) {
//DivInstrument* ins=parent->getIns(chan[i].ins,DIV_INS_AMIGA);
chan[i].freq=off*parent->calcFreq(chan[i].baseFreq,chan[i].pitch,true,0,chan[i].pitch2,chipClock,CHIP_DIVIDER);
if (chan[i].freq>4095) chan[i].freq=4095;
if (chan[i].freq<0) chan[i].freq=0;
if (chan[i].keyOn) {
}
if (chan[i].keyOff) {
}
if (chan[i].keyOn) chan[i].keyOn=false;
if (chan[i].keyOff) chan[i].keyOff=false;
chan[i].freqChanged=false;
}
}
}
int DivPlatformAmiga::dispatch(DivCommand c) {
switch (c.cmd) {
case DIV_CMD_NOTE_ON: {
DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_AMIGA);
if (ins->amiga.useWave) {
chan[c.chan].useWave=true;
chan[c.chan].audLen=(ins->amiga.waveLen+1)>>1;
if (chan[c.chan].insChanged) {
if (chan[c.chan].wave<0) {
chan[c.chan].wave=0;
chan[c.chan].ws.setWidth(chan[c.chan].audLen<<1);
chan[c.chan].ws.changeWave1(chan[c.chan].wave);
}
}
} else {
chan[c.chan].sample=ins->amiga.getSample(c.value);
chan[c.chan].useWave=false;
}
if (c.value!=DIV_NOTE_NULL) {
chan[c.chan].baseFreq=round(NOTE_PERIODIC_NOROUND(c.value));
}
if (chan[c.chan].useWave || chan[c.chan].sample<0 || chan[c.chan].sample>=parent->song.sampleLen) {
chan[c.chan].sample=-1;
}
if (chan[c.chan].setPos) {
chan[c.chan].setPos=false;
} else {
chan[c.chan].audPos=0;
}
chan[c.chan].audSub=0;
if (c.value!=DIV_NOTE_NULL) {
chan[c.chan].freqChanged=true;
chan[c.chan].note=c.value;
}
chan[c.chan].active=true;
chan[c.chan].keyOn=true;
chan[c.chan].macroInit(ins);
if (!parent->song.brokenOutVol && !chan[c.chan].std.vol.will) {
chan[c.chan].outVol=chan[c.chan].vol;
}
if (chan[c.chan].useWave) {
chan[c.chan].ws.init(ins,chan[c.chan].audLen<<1,255,chan[c.chan].insChanged);
}
chan[c.chan].insChanged=false;
break;
}
case DIV_CMD_NOTE_OFF:
chan[c.chan].sample=-1;
chan[c.chan].active=false;
chan[c.chan].keyOff=true;
chan[c.chan].macroInit(NULL);
break;
case DIV_CMD_NOTE_OFF_ENV:
case DIV_CMD_ENV_RELEASE:
chan[c.chan].std.release();
break;
case DIV_CMD_INSTRUMENT:
if (chan[c.chan].ins!=c.value || c.value2==1) {
chan[c.chan].ins=c.value;
chan[c.chan].insChanged=true;
}
break;
case DIV_CMD_VOLUME:
if (chan[c.chan].vol!=c.value) {
chan[c.chan].vol=c.value;
if (!chan[c.chan].std.vol.has) {
chan[c.chan].outVol=c.value;
}
}
break;
case DIV_CMD_GET_VOLUME:
if (chan[c.chan].std.vol.has) {
return chan[c.chan].vol;
}
return chan[c.chan].outVol;
break;
case DIV_CMD_PITCH:
chan[c.chan].pitch=c.value;
chan[c.chan].freqChanged=true;
break;
case DIV_CMD_WAVE:
if (!chan[c.chan].useWave) break;
chan[c.chan].wave=c.value;
chan[c.chan].keyOn=true;
chan[c.chan].ws.changeWave1(chan[c.chan].wave);
break;
case DIV_CMD_NOTE_PORTA: {
DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_AMIGA);
chan[c.chan].sample=ins->amiga.getSample(c.value2);
int destFreq=round(NOTE_PERIODIC_NOROUND(c.value2));
bool return2=false;
if (destFreq>chan[c.chan].baseFreq) {
chan[c.chan].baseFreq+=c.value;
if (chan[c.chan].baseFreq>=destFreq) {
chan[c.chan].baseFreq=destFreq;
return2=true;
}
} else {
chan[c.chan].baseFreq-=c.value;
if (chan[c.chan].baseFreq<=destFreq) {
chan[c.chan].baseFreq=destFreq;
return2=true;
}
}
chan[c.chan].freqChanged=true;
if (return2) {
chan[c.chan].inPorta=false;
return 2;
}
break;
}
case DIV_CMD_LEGATO: {
chan[c.chan].baseFreq=round(NOTE_PERIODIC_NOROUND(c.value+((chan[c.chan].std.arp.will && !chan[c.chan].std.arp.mode)?(chan[c.chan].std.arp.val):(0))));
chan[c.chan].freqChanged=true;
chan[c.chan].note=c.value;
break;
}
case DIV_CMD_PRE_PORTA:
if (chan[c.chan].active && c.value2) {
if (parent->song.resetMacroOnPorta) chan[c.chan].macroInit(parent->getIns(chan[c.chan].ins,DIV_INS_AMIGA));
}
if (!chan[c.chan].inPorta && c.value && !parent->song.brokenPortaArp && chan[c.chan].std.arp.will) chan[c.chan].baseFreq=NOTE_PERIODIC(chan[c.chan].note);
chan[c.chan].inPorta=c.value;
break;
case DIV_CMD_SAMPLE_POS:
if (chan[c.chan].useWave) break;
chan[c.chan].audPos=c.value;
chan[c.chan].setPos=true;
break;
case DIV_CMD_AMIGA_FILTER:
filterOn=c.value;
filtConst=filterOn?filtConstOn:filtConstOff;
break;
case DIV_CMD_AMIGA_AM:
chan[c.chan].useV=c.value;
break;
case DIV_CMD_AMIGA_PM:
chan[c.chan].useP=c.value;
break;
case DIV_CMD_GET_VOLMAX:
return 64;
break;
case DIV_ALWAYS_SET_VOLUME:
return 1;
break;
default:
break;
}
return 1;
}
void DivPlatformAmiga::muteChannel(int ch, bool mute) {
isMuted[ch]=mute;
}
void DivPlatformAmiga::forceIns() {
for (int i=0; i<4; i++) {
chan[i].insChanged=true;
chan[i].freqChanged=true;
chan[i].audPos=131072;
chan[i].audDat=0;
chan[i].sample=-1;
}
}
void* DivPlatformAmiga::getChanState(int ch) {
return &chan[ch];
}
DivDispatchOscBuffer* DivPlatformAmiga::getOscBuffer(int ch) {
return oscBuf[ch];
}
void DivPlatformAmiga::reset() {
for (int i=0; i<4; i++) {
chan[i]=DivPlatformAmiga::Channel();
chan[i].std.setEngine(parent);
chan[i].ws.setEngine(parent);
chan[i].ws.init(NULL,32,255);
filter[0][i]=0;
filter[1][i]=0;
}
filterOn=false;
filtConst=filterOn?filtConstOn:filtConstOff;
}
bool DivPlatformAmiga::isStereo() {
return true;
}
bool DivPlatformAmiga::keyOffAffectsArp(int ch) {
return true;
}
DivMacroInt* DivPlatformAmiga::getChanMacroInt(int ch) {
return &chan[ch].std;
}
void DivPlatformAmiga::notifyInsChange(int ins) {
for (int i=0; i<4; i++) {
if (chan[i].ins==ins) {
chan[i].insChanged=true;
}
}
}
void DivPlatformAmiga::notifyWaveChange(int wave) {
for (int i=0; i<4; i++) {
if (chan[i].useWave && chan[i].wave==wave) {
chan[i].ws.changeWave1(wave);
}
}
}
void DivPlatformAmiga::notifyInsDeletion(void* ins) {
for (int i=0; i<4; i++) {
chan[i].std.notifyInsDeletion((DivInstrument*)ins);
}
}
void DivPlatformAmiga::setFlags(unsigned int flags) {
if (flags&1) {
chipClock=COLOR_PAL*4.0/5.0;
} else {
chipClock=COLOR_NTSC;
}
rate=chipClock/AMIGA_DIVIDER;
for (int i=0; i<4; i++) {
oscBuf[i]->rate=rate;
}
sep1=((flags>>8)&127)+127;
sep2=127-((flags>>8)&127);
amigaModel=flags&2;
bypassLimits=flags&4;
if (amigaModel) {
filtConstOff=4000;
filtConstOn=sin(M_PI*8000.0/(double)rate)*4096.0;
} else {
filtConstOff=sin(M_PI*16000.0/(double)rate)*4096.0;
filtConstOn=sin(M_PI*5500.0/(double)rate)*4096.0;
}
}
int DivPlatformAmiga::init(DivEngine* p, int channels, int sugRate, unsigned int flags) {
parent=p;
dumpWrites=false;
skipRegisterWrites=false;
for (int i=0; i<4; i++) {
oscBuf[i]=new DivDispatchOscBuffer;
isMuted[i]=false;
}
setFlags(flags);
reset();
return 6;
}
void DivPlatformAmiga::quit() {
for (int i=0; i<4; i++) {
delete oscBuf[i];
}
}