275 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			275 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* This file was automatically generated --- DO NOT EDIT */
 | |
| /* Generated on Tue Sep 14 10:46:50 EDT 2021 */
 | |
| 
 | |
| #include "rdft/codelet-rdft.h"
 | |
| 
 | |
| #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 5 -dif -name hb_5 -include rdft/scalar/hb.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 40 FP additions, 34 FP multiplications,
 | |
|  * (or, 14 additions, 8 multiplications, 26 fused multiply/add),
 | |
|  * 27 stack variables, 4 constants, and 20 memory accesses
 | |
|  */
 | |
| #include "rdft/scalar/hb.h"
 | |
| 
 | |
| static void hb_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DK(KP951056516, +0.951056516295153572116439333379382143405698634);
 | |
|      DK(KP559016994, +0.559016994374947424102293417182819058860154590);
 | |
|      DK(KP250000000, +0.250000000000000000000000000000000000000000000);
 | |
|      DK(KP618033988, +0.618033988749894848204586834365638117720309180);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
 | |
| 	       E T1, Tb, TM, Tw, T8, Ta, Tn, Tj, TH, Ts, Tq, Tr;
 | |
| 	       {
 | |
| 		    E T4, Tu, T7, Tv;
 | |
| 		    T1 = cr[0];
 | |
| 		    {
 | |
| 			 E T2, T3, T5, T6;
 | |
| 			 T2 = cr[WS(rs, 1)];
 | |
| 			 T3 = ci[0];
 | |
| 			 T4 = T2 + T3;
 | |
| 			 Tu = T2 - T3;
 | |
| 			 T5 = cr[WS(rs, 2)];
 | |
| 			 T6 = ci[WS(rs, 1)];
 | |
| 			 T7 = T5 + T6;
 | |
| 			 Tv = T5 - T6;
 | |
| 		    }
 | |
| 		    Tb = T4 - T7;
 | |
| 		    TM = FNMS(KP618033988, Tu, Tv);
 | |
| 		    Tw = FMA(KP618033988, Tv, Tu);
 | |
| 		    T8 = T4 + T7;
 | |
| 		    Ta = FNMS(KP250000000, T8, T1);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tf, To, Ti, Tp;
 | |
| 		    Tn = ci[WS(rs, 4)];
 | |
| 		    {
 | |
| 			 E Td, Te, Tg, Th;
 | |
| 			 Td = ci[WS(rs, 3)];
 | |
| 			 Te = cr[WS(rs, 4)];
 | |
| 			 Tf = Td + Te;
 | |
| 			 To = Td - Te;
 | |
| 			 Tg = ci[WS(rs, 2)];
 | |
| 			 Th = cr[WS(rs, 3)];
 | |
| 			 Ti = Tg + Th;
 | |
| 			 Tp = Tg - Th;
 | |
| 		    }
 | |
| 		    Tj = FMA(KP618033988, Ti, Tf);
 | |
| 		    TH = FNMS(KP618033988, Tf, Ti);
 | |
| 		    Ts = To - Tp;
 | |
| 		    Tq = To + Tp;
 | |
| 		    Tr = FNMS(KP250000000, Tq, Tn);
 | |
| 	       }
 | |
| 	       cr[0] = T1 + T8;
 | |
| 	       ci[0] = Tn + Tq;
 | |
| 	       {
 | |
| 		    E Tk, TA, Tx, TD, Tc, Tt;
 | |
| 		    Tc = FMA(KP559016994, Tb, Ta);
 | |
| 		    Tk = FNMS(KP951056516, Tj, Tc);
 | |
| 		    TA = FMA(KP951056516, Tj, Tc);
 | |
| 		    Tt = FMA(KP559016994, Ts, Tr);
 | |
| 		    Tx = FMA(KP951056516, Tw, Tt);
 | |
| 		    TD = FNMS(KP951056516, Tw, Tt);
 | |
| 		    {
 | |
| 			 E T9, Tl, Tm, Ty;
 | |
| 			 T9 = W[0];
 | |
| 			 Tl = T9 * Tk;
 | |
| 			 Tm = W[1];
 | |
| 			 Ty = Tm * Tk;
 | |
| 			 cr[WS(rs, 1)] = FNMS(Tm, Tx, Tl);
 | |
| 			 ci[WS(rs, 1)] = FMA(T9, Tx, Ty);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E Tz, TB, TC, TE;
 | |
| 			 Tz = W[6];
 | |
| 			 TB = Tz * TA;
 | |
| 			 TC = W[7];
 | |
| 			 TE = TC * TA;
 | |
| 			 cr[WS(rs, 4)] = FNMS(TC, TD, TB);
 | |
| 			 ci[WS(rs, 4)] = FMA(Tz, TD, TE);
 | |
| 		    }
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TI, TQ, TN, TT, TG, TL;
 | |
| 		    TG = FNMS(KP559016994, Tb, Ta);
 | |
| 		    TI = FMA(KP951056516, TH, TG);
 | |
| 		    TQ = FNMS(KP951056516, TH, TG);
 | |
| 		    TL = FNMS(KP559016994, Ts, Tr);
 | |
| 		    TN = FNMS(KP951056516, TM, TL);
 | |
| 		    TT = FMA(KP951056516, TM, TL);
 | |
| 		    {
 | |
| 			 E TF, TJ, TK, TO;
 | |
| 			 TF = W[2];
 | |
| 			 TJ = TF * TI;
 | |
| 			 TK = W[3];
 | |
| 			 TO = TK * TI;
 | |
| 			 cr[WS(rs, 2)] = FNMS(TK, TN, TJ);
 | |
| 			 ci[WS(rs, 2)] = FMA(TF, TN, TO);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E TP, TR, TS, TU;
 | |
| 			 TP = W[4];
 | |
| 			 TR = TP * TQ;
 | |
| 			 TS = W[5];
 | |
| 			 TU = TS * TQ;
 | |
| 			 cr[WS(rs, 3)] = FNMS(TS, TT, TR);
 | |
| 			 ci[WS(rs, 3)] = FMA(TP, TT, TU);
 | |
| 		    }
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      { TW_FULL, 1, 5 },
 | |
|      { TW_NEXT, 1, 0 }
 | |
| };
 | |
| 
 | |
| static const hc2hc_desc desc = { 5, "hb_5", twinstr, &GENUS, { 14, 8, 26, 0 } };
 | |
| 
 | |
| void X(codelet_hb_5) (planner *p) {
 | |
|      X(khc2hc_register) (p, hb_5, &desc);
 | |
| }
 | |
| #else
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 5 -dif -name hb_5 -include rdft/scalar/hb.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 40 FP additions, 28 FP multiplications,
 | |
|  * (or, 26 additions, 14 multiplications, 14 fused multiply/add),
 | |
|  * 27 stack variables, 4 constants, and 20 memory accesses
 | |
|  */
 | |
| #include "rdft/scalar/hb.h"
 | |
| 
 | |
| static void hb_5(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DK(KP250000000, +0.250000000000000000000000000000000000000000000);
 | |
|      DK(KP587785252, +0.587785252292473129168705954639072768597652438);
 | |
|      DK(KP951056516, +0.951056516295153572116439333379382143405698634);
 | |
|      DK(KP559016994, +0.559016994374947424102293417182819058860154590);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs)) {
 | |
| 	       E T1, Tj, TG, Ts, T8, Ti, T9, Tn, TD, Tu, Tg, Tt;
 | |
| 	       {
 | |
| 		    E T4, Tq, T7, Tr;
 | |
| 		    T1 = cr[0];
 | |
| 		    {
 | |
| 			 E T2, T3, T5, T6;
 | |
| 			 T2 = cr[WS(rs, 1)];
 | |
| 			 T3 = ci[0];
 | |
| 			 T4 = T2 + T3;
 | |
| 			 Tq = T2 - T3;
 | |
| 			 T5 = cr[WS(rs, 2)];
 | |
| 			 T6 = ci[WS(rs, 1)];
 | |
| 			 T7 = T5 + T6;
 | |
| 			 Tr = T5 - T6;
 | |
| 		    }
 | |
| 		    Tj = KP559016994 * (T4 - T7);
 | |
| 		    TG = FMA(KP951056516, Tq, KP587785252 * Tr);
 | |
| 		    Ts = FNMS(KP951056516, Tr, KP587785252 * Tq);
 | |
| 		    T8 = T4 + T7;
 | |
| 		    Ti = FNMS(KP250000000, T8, T1);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tc, Tl, Tf, Tm;
 | |
| 		    T9 = ci[WS(rs, 4)];
 | |
| 		    {
 | |
| 			 E Ta, Tb, Td, Te;
 | |
| 			 Ta = ci[WS(rs, 3)];
 | |
| 			 Tb = cr[WS(rs, 4)];
 | |
| 			 Tc = Ta - Tb;
 | |
| 			 Tl = Ta + Tb;
 | |
| 			 Td = ci[WS(rs, 2)];
 | |
| 			 Te = cr[WS(rs, 3)];
 | |
| 			 Tf = Td - Te;
 | |
| 			 Tm = Td + Te;
 | |
| 		    }
 | |
| 		    Tn = FNMS(KP951056516, Tm, KP587785252 * Tl);
 | |
| 		    TD = FMA(KP951056516, Tl, KP587785252 * Tm);
 | |
| 		    Tu = KP559016994 * (Tc - Tf);
 | |
| 		    Tg = Tc + Tf;
 | |
| 		    Tt = FNMS(KP250000000, Tg, T9);
 | |
| 	       }
 | |
| 	       cr[0] = T1 + T8;
 | |
| 	       ci[0] = T9 + Tg;
 | |
| 	       {
 | |
| 		    E To, Ty, Tw, TA, Tk, Tv;
 | |
| 		    Tk = Ti - Tj;
 | |
| 		    To = Tk - Tn;
 | |
| 		    Ty = Tk + Tn;
 | |
| 		    Tv = Tt - Tu;
 | |
| 		    Tw = Ts + Tv;
 | |
| 		    TA = Tv - Ts;
 | |
| 		    {
 | |
| 			 E Th, Tp, Tx, Tz;
 | |
| 			 Th = W[2];
 | |
| 			 Tp = W[3];
 | |
| 			 cr[WS(rs, 2)] = FNMS(Tp, Tw, Th * To);
 | |
| 			 ci[WS(rs, 2)] = FMA(Th, Tw, Tp * To);
 | |
| 			 Tx = W[4];
 | |
| 			 Tz = W[5];
 | |
| 			 cr[WS(rs, 3)] = FNMS(Tz, TA, Tx * Ty);
 | |
| 			 ci[WS(rs, 3)] = FMA(Tx, TA, Tz * Ty);
 | |
| 		    }
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TE, TK, TI, TM, TC, TH;
 | |
| 		    TC = Tj + Ti;
 | |
| 		    TE = TC - TD;
 | |
| 		    TK = TC + TD;
 | |
| 		    TH = Tu + Tt;
 | |
| 		    TI = TG + TH;
 | |
| 		    TM = TH - TG;
 | |
| 		    {
 | |
| 			 E TB, TF, TJ, TL;
 | |
| 			 TB = W[0];
 | |
| 			 TF = W[1];
 | |
| 			 cr[WS(rs, 1)] = FNMS(TF, TI, TB * TE);
 | |
| 			 ci[WS(rs, 1)] = FMA(TB, TI, TF * TE);
 | |
| 			 TJ = W[6];
 | |
| 			 TL = W[7];
 | |
| 			 cr[WS(rs, 4)] = FNMS(TL, TM, TJ * TK);
 | |
| 			 ci[WS(rs, 4)] = FMA(TJ, TM, TL * TK);
 | |
| 		    }
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      { TW_FULL, 1, 5 },
 | |
|      { TW_NEXT, 1, 0 }
 | |
| };
 | |
| 
 | |
| static const hc2hc_desc desc = { 5, "hb_5", twinstr, &GENUS, { 26, 14, 14, 0 } };
 | |
| 
 | |
| void X(codelet_hb_5) (planner *p) {
 | |
|      X(khc2hc_register) (p, hb_5, &desc);
 | |
| }
 | |
| #endif
 |