647 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			647 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* This file was automatically generated --- DO NOT EDIT */
 | |
| /* Generated on Tue Sep 14 10:46:37 EDT 2021 */
 | |
| 
 | |
| #include "rdft/codelet-rdft.h"
 | |
| 
 | |
| #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hc2cfdft_12 -include rdft/scalar/hc2cf.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 142 FP additions, 92 FP multiplications,
 | |
|  * (or, 96 additions, 46 multiplications, 46 fused multiply/add),
 | |
|  * 65 stack variables, 2 constants, and 48 memory accesses
 | |
|  */
 | |
| #include "rdft/scalar/hc2cf.h"
 | |
| 
 | |
| static void hc2cfdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DK(KP866025403, +0.866025403784438646763723170752936183471402627);
 | |
|      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) {
 | |
| 	       E To, T1E, T1m, T2H, Ta, T1G, Tk, T1I, Tl, T1J, T1s, T2b, T1A, T2d, T1B;
 | |
| 	       E T2I, T12, T18, T19, T24, T26, T2C, Tz, T1M, T1f, T2B, TJ, T1O, TT, T1Q;
 | |
| 	       E TU, T1R;
 | |
| 	       {
 | |
| 		    E Tm, Tn, T1u, T1x, T1y, T1z, T1v, T2c, Te, Tj, T1i, T1l, Tf, T1H, T4;
 | |
| 		    E T1o, T9, T1r, T5, T1F, T1p, T2a, T1t, T1, T1n;
 | |
| 		    Tm = Ip[0];
 | |
| 		    Tn = Im[0];
 | |
| 		    T1u = Tm + Tn;
 | |
| 		    T1x = Rp[0];
 | |
| 		    T1y = Rm[0];
 | |
| 		    T1z = T1x - T1y;
 | |
| 		    T1t = W[0];
 | |
| 		    T1v = T1t * T1u;
 | |
| 		    T2c = T1t * T1z;
 | |
| 		    {
 | |
| 			 E Tc, Td, Th, Ti, Tb;
 | |
| 			 Tc = Ip[WS(rs, 4)];
 | |
| 			 Td = Im[WS(rs, 4)];
 | |
| 			 Te = Tc - Td;
 | |
| 			 Th = Rp[WS(rs, 4)];
 | |
| 			 Ti = Rm[WS(rs, 4)];
 | |
| 			 Tj = Th + Ti;
 | |
| 			 T1i = Tc + Td;
 | |
| 			 T1l = Th - Ti;
 | |
| 			 Tb = W[14];
 | |
| 			 Tf = Tb * Te;
 | |
| 			 T1H = Tb * Tj;
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E T2, T3, T7, T8;
 | |
| 			 T2 = Ip[WS(rs, 2)];
 | |
| 			 T3 = Im[WS(rs, 2)];
 | |
| 			 T4 = T2 - T3;
 | |
| 			 T1o = T2 + T3;
 | |
| 			 T7 = Rp[WS(rs, 2)];
 | |
| 			 T8 = Rm[WS(rs, 2)];
 | |
| 			 T9 = T7 + T8;
 | |
| 			 T1r = T7 - T8;
 | |
| 		    }
 | |
| 		    T1 = W[6];
 | |
| 		    T5 = T1 * T4;
 | |
| 		    T1F = T1 * T9;
 | |
| 		    T1n = W[8];
 | |
| 		    T1p = T1n * T1o;
 | |
| 		    T2a = T1n * T1r;
 | |
| 		    To = Tm - Tn;
 | |
| 		    T1E = T1x + T1y;
 | |
| 		    {
 | |
| 			 E T1j, T2G, T1h, T1k;
 | |
| 			 T1h = W[16];
 | |
| 			 T1j = T1h * T1i;
 | |
| 			 T2G = T1h * T1l;
 | |
| 			 T1k = W[17];
 | |
| 			 T1m = FNMS(T1k, T1l, T1j);
 | |
| 			 T2H = FMA(T1k, T1i, T2G);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E T6, Tg, T1q, T1w;
 | |
| 			 T6 = W[7];
 | |
| 			 Ta = FNMS(T6, T9, T5);
 | |
| 			 T1G = FMA(T6, T4, T1F);
 | |
| 			 Tg = W[15];
 | |
| 			 Tk = FNMS(Tg, Tj, Tf);
 | |
| 			 T1I = FMA(Tg, Te, T1H);
 | |
| 			 Tl = Ta + Tk;
 | |
| 			 T1J = T1G + T1I;
 | |
| 			 T1q = W[9];
 | |
| 			 T1s = FNMS(T1q, T1r, T1p);
 | |
| 			 T2b = FMA(T1q, T1o, T2a);
 | |
| 			 T1w = W[1];
 | |
| 			 T1A = FNMS(T1w, T1z, T1v);
 | |
| 			 T2d = FMA(T1w, T1u, T2c);
 | |
| 			 T1B = T1s + T1A;
 | |
| 			 T2I = T2b + T2d;
 | |
| 		    }
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tt, T11, Ty, T10, T23, TX, TZ, TN, TS, T1b, T1e, TO, T1P, TD, TI;
 | |
| 		    E T17, T16, T25, T13, T15, TE, T1N, TF, TP;
 | |
| 		    {
 | |
| 			 E Tr, Ts, Tw, Tx, TY;
 | |
| 			 Tr = Ip[WS(rs, 3)];
 | |
| 			 Ts = Im[WS(rs, 3)];
 | |
| 			 Tt = Tr - Ts;
 | |
| 			 T11 = Tr + Ts;
 | |
| 			 Tw = Rp[WS(rs, 3)];
 | |
| 			 Tx = Rm[WS(rs, 3)];
 | |
| 			 TY = Tx - Tw;
 | |
| 			 Ty = Tw + Tx;
 | |
| 			 T10 = W[12];
 | |
| 			 T23 = T10 * TY;
 | |
| 			 TX = W[13];
 | |
| 			 TZ = TX * TY;
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E TL, TM, TQ, TR, TK;
 | |
| 			 TL = Ip[WS(rs, 1)];
 | |
| 			 TM = Im[WS(rs, 1)];
 | |
| 			 TN = TL - TM;
 | |
| 			 TQ = Rp[WS(rs, 1)];
 | |
| 			 TR = Rm[WS(rs, 1)];
 | |
| 			 TS = TQ + TR;
 | |
| 			 T1b = TL + TM;
 | |
| 			 T1e = TQ - TR;
 | |
| 			 TK = W[2];
 | |
| 			 TO = TK * TN;
 | |
| 			 T1P = TK * TS;
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E TB, TC, T14, TG, TH, TA;
 | |
| 			 TB = Ip[WS(rs, 5)];
 | |
| 			 TC = Im[WS(rs, 5)];
 | |
| 			 TD = TB - TC;
 | |
| 			 TG = Rp[WS(rs, 5)];
 | |
| 			 TH = Rm[WS(rs, 5)];
 | |
| 			 TI = TG + TH;
 | |
| 			 T14 = TH - TG;
 | |
| 			 T17 = TB + TC;
 | |
| 			 T16 = W[20];
 | |
| 			 T25 = T16 * T14;
 | |
| 			 T13 = W[21];
 | |
| 			 T15 = T13 * T14;
 | |
| 			 TA = W[18];
 | |
| 			 TE = TA * TD;
 | |
| 			 T1N = TA * TI;
 | |
| 		    }
 | |
| 		    T12 = FMA(T10, T11, TZ);
 | |
| 		    T18 = FMA(T16, T17, T15);
 | |
| 		    T19 = T12 + T18;
 | |
| 		    T24 = FNMS(TX, T11, T23);
 | |
| 		    T26 = FNMS(T13, T17, T25);
 | |
| 		    T2C = T24 + T26;
 | |
| 		    {
 | |
| 			 E Tu, T1L, Tq, Tv;
 | |
| 			 Tq = W[10];
 | |
| 			 Tu = Tq * Tt;
 | |
| 			 T1L = Tq * Ty;
 | |
| 			 Tv = W[11];
 | |
| 			 Tz = FNMS(Tv, Ty, Tu);
 | |
| 			 T1M = FMA(Tv, Tt, T1L);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E T1c, T2A, T1a, T1d;
 | |
| 			 T1a = W[4];
 | |
| 			 T1c = T1a * T1b;
 | |
| 			 T2A = T1a * T1e;
 | |
| 			 T1d = W[5];
 | |
| 			 T1f = FNMS(T1d, T1e, T1c);
 | |
| 			 T2B = FMA(T1d, T1b, T2A);
 | |
| 		    }
 | |
| 		    TF = W[19];
 | |
| 		    TJ = FNMS(TF, TI, TE);
 | |
| 		    T1O = FMA(TF, TD, T1N);
 | |
| 		    TP = W[3];
 | |
| 		    TT = FNMS(TP, TS, TO);
 | |
| 		    T1Q = FMA(TP, TN, T1P);
 | |
| 		    TU = TJ + TT;
 | |
| 		    T1R = T1O + T1Q;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TW, T2V, T2Y, T30, T1D, T1U, T1T, T2Z;
 | |
| 		    {
 | |
| 			 E Tp, TV, T2W, T2X;
 | |
| 			 Tp = Tl + To;
 | |
| 			 TV = Tz + TU;
 | |
| 			 TW = Tp - TV;
 | |
| 			 T2V = TV + Tp;
 | |
| 			 T2W = T2C - T2B;
 | |
| 			 T2X = T2H + T2I;
 | |
| 			 T2Y = T2W - T2X;
 | |
| 			 T30 = T2W + T2X;
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E T1g, T1C, T1K, T1S;
 | |
| 			 T1g = T19 + T1f;
 | |
| 			 T1C = T1m + T1B;
 | |
| 			 T1D = T1g - T1C;
 | |
| 			 T1U = T1g + T1C;
 | |
| 			 T1K = T1E + T1J;
 | |
| 			 T1S = T1M + T1R;
 | |
| 			 T1T = T1K + T1S;
 | |
| 			 T2Z = T1K - T1S;
 | |
| 		    }
 | |
| 		    Ip[WS(rs, 3)] = KP500000000 * (TW + T1D);
 | |
| 		    Rp[WS(rs, 3)] = KP500000000 * (T2Z - T30);
 | |
| 		    Im[WS(rs, 2)] = KP500000000 * (T1D - TW);
 | |
| 		    Rm[WS(rs, 2)] = KP500000000 * (T2Z + T30);
 | |
| 		    Rm[WS(rs, 5)] = KP500000000 * (T1T - T1U);
 | |
| 		    Im[WS(rs, 5)] = KP500000000 * (T2Y - T2V);
 | |
| 		    Rp[0] = KP500000000 * (T1T + T1U);
 | |
| 		    Ip[0] = KP500000000 * (T2V + T2Y);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T1X, T2v, T2F, T2Q, T2L, T2R, T20, T2w, T28, T2t, T2j, T2p, T2m, T2q, T2f;
 | |
| 		    E T2s;
 | |
| 		    {
 | |
| 			 E T1V, T1W, T2D, T2E;
 | |
| 			 T1V = FNMS(KP500000000, T1J, T1E);
 | |
| 			 T1W = Ta - Tk;
 | |
| 			 T1X = FNMS(KP866025403, T1W, T1V);
 | |
| 			 T2v = FMA(KP866025403, T1W, T1V);
 | |
| 			 T2D = FMA(KP500000000, T2C, T2B);
 | |
| 			 T2E = T18 - T12;
 | |
| 			 T2F = FNMS(KP866025403, T2E, T2D);
 | |
| 			 T2Q = FMA(KP866025403, T2E, T2D);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E T2J, T2K, T1Y, T1Z;
 | |
| 			 T2J = FNMS(KP500000000, T2I, T2H);
 | |
| 			 T2K = T1s - T1A;
 | |
| 			 T2L = FNMS(KP866025403, T2K, T2J);
 | |
| 			 T2R = FMA(KP866025403, T2K, T2J);
 | |
| 			 T1Y = FNMS(KP500000000, T1R, T1M);
 | |
| 			 T1Z = TJ - TT;
 | |
| 			 T20 = FNMS(KP866025403, T1Z, T1Y);
 | |
| 			 T2w = FMA(KP866025403, T1Z, T1Y);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E T22, T27, T2h, T2i;
 | |
| 			 T22 = FNMS(KP500000000, T19, T1f);
 | |
| 			 T27 = T24 - T26;
 | |
| 			 T28 = FNMS(KP866025403, T27, T22);
 | |
| 			 T2t = FMA(KP866025403, T27, T22);
 | |
| 			 T2h = FNMS(KP500000000, Tl, To);
 | |
| 			 T2i = T1I - T1G;
 | |
| 			 T2j = FNMS(KP866025403, T2i, T2h);
 | |
| 			 T2p = FMA(KP866025403, T2i, T2h);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E T2k, T2l, T29, T2e;
 | |
| 			 T2k = FNMS(KP500000000, TU, Tz);
 | |
| 			 T2l = T1Q - T1O;
 | |
| 			 T2m = FNMS(KP866025403, T2l, T2k);
 | |
| 			 T2q = FMA(KP866025403, T2l, T2k);
 | |
| 			 T29 = FNMS(KP500000000, T1B, T1m);
 | |
| 			 T2e = T2b - T2d;
 | |
| 			 T2f = FNMS(KP866025403, T2e, T29);
 | |
| 			 T2s = FMA(KP866025403, T2e, T29);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E T21, T2g, T2P, T2S;
 | |
| 			 T21 = T1X + T20;
 | |
| 			 T2g = T28 + T2f;
 | |
| 			 Rp[WS(rs, 2)] = KP500000000 * (T21 - T2g);
 | |
| 			 Rm[WS(rs, 3)] = KP500000000 * (T21 + T2g);
 | |
| 			 T2P = T2m + T2j;
 | |
| 			 T2S = T2Q + T2R;
 | |
| 			 Ip[WS(rs, 2)] = KP500000000 * (T2P + T2S);
 | |
| 			 Im[WS(rs, 3)] = KP500000000 * (T2S - T2P);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E T2n, T2o, T2T, T2U;
 | |
| 			 T2n = T2j - T2m;
 | |
| 			 T2o = T2f - T28;
 | |
| 			 Ip[WS(rs, 5)] = KP500000000 * (T2n + T2o);
 | |
| 			 Im[0] = KP500000000 * (T2o - T2n);
 | |
| 			 T2T = T1X - T20;
 | |
| 			 T2U = T2R - T2Q;
 | |
| 			 Rm[0] = KP500000000 * (T2T - T2U);
 | |
| 			 Rp[WS(rs, 5)] = KP500000000 * (T2T + T2U);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E T2r, T2u, T2N, T2O;
 | |
| 			 T2r = T2p - T2q;
 | |
| 			 T2u = T2s - T2t;
 | |
| 			 Ip[WS(rs, 1)] = KP500000000 * (T2r + T2u);
 | |
| 			 Im[WS(rs, 4)] = KP500000000 * (T2u - T2r);
 | |
| 			 T2N = T2v - T2w;
 | |
| 			 T2O = T2L - T2F;
 | |
| 			 Rm[WS(rs, 4)] = KP500000000 * (T2N - T2O);
 | |
| 			 Rp[WS(rs, 1)] = KP500000000 * (T2N + T2O);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E T2x, T2y, T2z, T2M;
 | |
| 			 T2x = T2v + T2w;
 | |
| 			 T2y = T2t + T2s;
 | |
| 			 Rm[WS(rs, 1)] = KP500000000 * (T2x - T2y);
 | |
| 			 Rp[WS(rs, 4)] = KP500000000 * (T2x + T2y);
 | |
| 			 T2z = T2q + T2p;
 | |
| 			 T2M = T2F + T2L;
 | |
| 			 Ip[WS(rs, 4)] = KP500000000 * (T2z - T2M);
 | |
| 			 Im[WS(rs, 1)] = -(KP500000000 * (T2z + T2M));
 | |
| 		    }
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      { TW_FULL, 1, 12 },
 | |
|      { TW_NEXT, 1, 0 }
 | |
| };
 | |
| 
 | |
| static const hc2c_desc desc = { 12, "hc2cfdft_12", twinstr, &GENUS, { 96, 46, 46, 0 } };
 | |
| 
 | |
| void X(codelet_hc2cfdft_12) (planner *p) {
 | |
|      X(khc2c_register) (p, hc2cfdft_12, &desc, HC2C_VIA_DFT);
 | |
| }
 | |
| #else
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hc2cfdft_12 -include rdft/scalar/hc2cf.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 142 FP additions, 76 FP multiplications,
 | |
|  * (or, 112 additions, 46 multiplications, 30 fused multiply/add),
 | |
|  * 52 stack variables, 3 constants, and 48 memory accesses
 | |
|  */
 | |
| #include "rdft/scalar/hc2cf.h"
 | |
| 
 | |
| static void hc2cfdft_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
 | |
| {
 | |
|      DK(KP250000000, +0.250000000000000000000000000000000000000000000);
 | |
|      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
 | |
|      DK(KP433012701, +0.433012701892219323381861585376468091735701313);
 | |
|      {
 | |
| 	  INT m;
 | |
| 	  for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) {
 | |
| 	       E Tm, T1t, T1d, T2j, Tj, T1Y, T1w, T1G, T1q, T2q, T1U, T2k, Tw, T1y, T17;
 | |
| 	       E T2g, TP, T21, T1B, T1J, T12, T2u, T1P, T2h;
 | |
| 	       {
 | |
| 		    E Tk, Tl, T1k, T1m, T1n, T1o, T4, T1f, T8, T1h, Th, T1c, Td, T1a, T19;
 | |
| 		    E T1b;
 | |
| 		    {
 | |
| 			 E T2, T3, T6, T7;
 | |
| 			 Tk = Ip[0];
 | |
| 			 Tl = Im[0];
 | |
| 			 T1k = Tk + Tl;
 | |
| 			 T1m = Rp[0];
 | |
| 			 T1n = Rm[0];
 | |
| 			 T1o = T1m - T1n;
 | |
| 			 T2 = Ip[WS(rs, 2)];
 | |
| 			 T3 = Im[WS(rs, 2)];
 | |
| 			 T4 = T2 - T3;
 | |
| 			 T1f = T2 + T3;
 | |
| 			 T6 = Rp[WS(rs, 2)];
 | |
| 			 T7 = Rm[WS(rs, 2)];
 | |
| 			 T8 = T6 + T7;
 | |
| 			 T1h = T6 - T7;
 | |
| 			 {
 | |
| 			      E Tf, Tg, Tb, Tc;
 | |
| 			      Tf = Rp[WS(rs, 4)];
 | |
| 			      Tg = Rm[WS(rs, 4)];
 | |
| 			      Th = Tf + Tg;
 | |
| 			      T1c = Tf - Tg;
 | |
| 			      Tb = Ip[WS(rs, 4)];
 | |
| 			      Tc = Im[WS(rs, 4)];
 | |
| 			      Td = Tb - Tc;
 | |
| 			      T1a = Tb + Tc;
 | |
| 			 }
 | |
| 		    }
 | |
| 		    Tm = Tk - Tl;
 | |
| 		    T1t = T1m + T1n;
 | |
| 		    T19 = W[16];
 | |
| 		    T1b = W[17];
 | |
| 		    T1d = FNMS(T1b, T1c, T19 * T1a);
 | |
| 		    T2j = FMA(T19, T1c, T1b * T1a);
 | |
| 		    {
 | |
| 			 E T9, T1u, Ti, T1v;
 | |
| 			 {
 | |
| 			      E T1, T5, Ta, Te;
 | |
| 			      T1 = W[6];
 | |
| 			      T5 = W[7];
 | |
| 			      T9 = FNMS(T5, T8, T1 * T4);
 | |
| 			      T1u = FMA(T1, T8, T5 * T4);
 | |
| 			      Ta = W[14];
 | |
| 			      Te = W[15];
 | |
| 			      Ti = FNMS(Te, Th, Ta * Td);
 | |
| 			      T1v = FMA(Ta, Th, Te * Td);
 | |
| 			 }
 | |
| 			 Tj = T9 + Ti;
 | |
| 			 T1Y = KP433012701 * (T1v - T1u);
 | |
| 			 T1w = T1u + T1v;
 | |
| 			 T1G = KP433012701 * (T9 - Ti);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E T1i, T1S, T1p, T1T;
 | |
| 			 {
 | |
| 			      E T1e, T1g, T1j, T1l;
 | |
| 			      T1e = W[8];
 | |
| 			      T1g = W[9];
 | |
| 			      T1i = FNMS(T1g, T1h, T1e * T1f);
 | |
| 			      T1S = FMA(T1e, T1h, T1g * T1f);
 | |
| 			      T1j = W[0];
 | |
| 			      T1l = W[1];
 | |
| 			      T1p = FNMS(T1l, T1o, T1j * T1k);
 | |
| 			      T1T = FMA(T1j, T1o, T1l * T1k);
 | |
| 			 }
 | |
| 			 T1q = T1i + T1p;
 | |
| 			 T2q = KP433012701 * (T1i - T1p);
 | |
| 			 T1U = KP433012701 * (T1S - T1T);
 | |
| 			 T2k = T1S + T1T;
 | |
| 		    }
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tr, TT, Tv, TV, TA, TY, TE, T10, TN, T14, TJ, T16;
 | |
| 		    {
 | |
| 			 E Tp, Tq, TC, TD;
 | |
| 			 Tp = Ip[WS(rs, 3)];
 | |
| 			 Tq = Im[WS(rs, 3)];
 | |
| 			 Tr = Tp - Tq;
 | |
| 			 TT = Tp + Tq;
 | |
| 			 {
 | |
| 			      E Tt, Tu, Ty, Tz;
 | |
| 			      Tt = Rp[WS(rs, 3)];
 | |
| 			      Tu = Rm[WS(rs, 3)];
 | |
| 			      Tv = Tt + Tu;
 | |
| 			      TV = Tt - Tu;
 | |
| 			      Ty = Ip[WS(rs, 5)];
 | |
| 			      Tz = Im[WS(rs, 5)];
 | |
| 			      TA = Ty - Tz;
 | |
| 			      TY = Ty + Tz;
 | |
| 			 }
 | |
| 			 TC = Rp[WS(rs, 5)];
 | |
| 			 TD = Rm[WS(rs, 5)];
 | |
| 			 TE = TC + TD;
 | |
| 			 T10 = TC - TD;
 | |
| 			 {
 | |
| 			      E TL, TM, TH, TI;
 | |
| 			      TL = Rp[WS(rs, 1)];
 | |
| 			      TM = Rm[WS(rs, 1)];
 | |
| 			      TN = TL + TM;
 | |
| 			      T14 = TM - TL;
 | |
| 			      TH = Ip[WS(rs, 1)];
 | |
| 			      TI = Im[WS(rs, 1)];
 | |
| 			      TJ = TH - TI;
 | |
| 			      T16 = TH + TI;
 | |
| 			 }
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E To, Ts, T13, T15;
 | |
| 			 To = W[10];
 | |
| 			 Ts = W[11];
 | |
| 			 Tw = FNMS(Ts, Tv, To * Tr);
 | |
| 			 T1y = FMA(To, Tv, Ts * Tr);
 | |
| 			 T13 = W[5];
 | |
| 			 T15 = W[4];
 | |
| 			 T17 = FMA(T13, T14, T15 * T16);
 | |
| 			 T2g = FNMS(T13, T16, T15 * T14);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E TF, T1z, TO, T1A;
 | |
| 			 {
 | |
| 			      E Tx, TB, TG, TK;
 | |
| 			      Tx = W[18];
 | |
| 			      TB = W[19];
 | |
| 			      TF = FNMS(TB, TE, Tx * TA);
 | |
| 			      T1z = FMA(Tx, TE, TB * TA);
 | |
| 			      TG = W[2];
 | |
| 			      TK = W[3];
 | |
| 			      TO = FNMS(TK, TN, TG * TJ);
 | |
| 			      T1A = FMA(TG, TN, TK * TJ);
 | |
| 			 }
 | |
| 			 TP = TF + TO;
 | |
| 			 T21 = KP433012701 * (T1A - T1z);
 | |
| 			 T1B = T1z + T1A;
 | |
| 			 T1J = KP433012701 * (TF - TO);
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E TW, T1O, T11, T1N;
 | |
| 			 {
 | |
| 			      E TS, TU, TX, TZ;
 | |
| 			      TS = W[12];
 | |
| 			      TU = W[13];
 | |
| 			      TW = FNMS(TU, TV, TS * TT);
 | |
| 			      T1O = FMA(TS, TV, TU * TT);
 | |
| 			      TX = W[20];
 | |
| 			      TZ = W[21];
 | |
| 			      T11 = FNMS(TZ, T10, TX * TY);
 | |
| 			      T1N = FMA(TX, T10, TZ * TY);
 | |
| 			 }
 | |
| 			 T12 = TW + T11;
 | |
| 			 T2u = KP433012701 * (T11 - TW);
 | |
| 			 T1P = KP433012701 * (T1N - T1O);
 | |
| 			 T2h = T1O + T1N;
 | |
| 		    }
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TR, T2f, T2m, T2o, T1s, T1E, T1D, T2n;
 | |
| 		    {
 | |
| 			 E Tn, TQ, T2i, T2l;
 | |
| 			 Tn = Tj + Tm;
 | |
| 			 TQ = Tw + TP;
 | |
| 			 TR = Tn - TQ;
 | |
| 			 T2f = TQ + Tn;
 | |
| 			 T2i = T2g - T2h;
 | |
| 			 T2l = T2j + T2k;
 | |
| 			 T2m = T2i - T2l;
 | |
| 			 T2o = T2i + T2l;
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E T18, T1r, T1x, T1C;
 | |
| 			 T18 = T12 + T17;
 | |
| 			 T1r = T1d + T1q;
 | |
| 			 T1s = T18 - T1r;
 | |
| 			 T1E = T18 + T1r;
 | |
| 			 T1x = T1t + T1w;
 | |
| 			 T1C = T1y + T1B;
 | |
| 			 T1D = T1x + T1C;
 | |
| 			 T2n = T1x - T1C;
 | |
| 		    }
 | |
| 		    Ip[WS(rs, 3)] = KP500000000 * (TR + T1s);
 | |
| 		    Rp[WS(rs, 3)] = KP500000000 * (T2n - T2o);
 | |
| 		    Im[WS(rs, 2)] = KP500000000 * (T1s - TR);
 | |
| 		    Rm[WS(rs, 2)] = KP500000000 * (T2n + T2o);
 | |
| 		    Rm[WS(rs, 5)] = KP500000000 * (T1D - T1E);
 | |
| 		    Im[WS(rs, 5)] = KP500000000 * (T2m - T2f);
 | |
| 		    Rp[0] = KP500000000 * (T1D + T1E);
 | |
| 		    Ip[0] = KP500000000 * (T2f + T2m);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T1H, T2b, T2s, T2B, T2v, T2A, T1K, T2c, T1Q, T29, T1Z, T25, T22, T26, T1V;
 | |
| 		    E T28;
 | |
| 		    {
 | |
| 			 E T1F, T2r, T2t, T1I;
 | |
| 			 T1F = FNMS(KP250000000, T1w, KP500000000 * T1t);
 | |
| 			 T1H = T1F - T1G;
 | |
| 			 T2b = T1F + T1G;
 | |
| 			 T2r = FNMS(KP500000000, T2j, KP250000000 * T2k);
 | |
| 			 T2s = T2q - T2r;
 | |
| 			 T2B = T2q + T2r;
 | |
| 			 T2t = FMA(KP250000000, T2h, KP500000000 * T2g);
 | |
| 			 T2v = T2t - T2u;
 | |
| 			 T2A = T2u + T2t;
 | |
| 			 T1I = FNMS(KP250000000, T1B, KP500000000 * T1y);
 | |
| 			 T1K = T1I - T1J;
 | |
| 			 T2c = T1I + T1J;
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E T1M, T1X, T20, T1R;
 | |
| 			 T1M = FNMS(KP250000000, T12, KP500000000 * T17);
 | |
| 			 T1Q = T1M - T1P;
 | |
| 			 T29 = T1P + T1M;
 | |
| 			 T1X = FNMS(KP250000000, Tj, KP500000000 * Tm);
 | |
| 			 T1Z = T1X - T1Y;
 | |
| 			 T25 = T1Y + T1X;
 | |
| 			 T20 = FNMS(KP250000000, TP, KP500000000 * Tw);
 | |
| 			 T22 = T20 - T21;
 | |
| 			 T26 = T21 + T20;
 | |
| 			 T1R = FNMS(KP250000000, T1q, KP500000000 * T1d);
 | |
| 			 T1V = T1R - T1U;
 | |
| 			 T28 = T1R + T1U;
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E T1L, T1W, T2p, T2w;
 | |
| 			 T1L = T1H + T1K;
 | |
| 			 T1W = T1Q + T1V;
 | |
| 			 Rp[WS(rs, 2)] = T1L - T1W;
 | |
| 			 Rm[WS(rs, 3)] = T1L + T1W;
 | |
| 			 T2p = T22 + T1Z;
 | |
| 			 T2w = T2s - T2v;
 | |
| 			 Ip[WS(rs, 2)] = T2p + T2w;
 | |
| 			 Im[WS(rs, 3)] = T2w - T2p;
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E T23, T24, T2x, T2y;
 | |
| 			 T23 = T1Z - T22;
 | |
| 			 T24 = T1V - T1Q;
 | |
| 			 Ip[WS(rs, 5)] = T23 + T24;
 | |
| 			 Im[0] = T24 - T23;
 | |
| 			 T2x = T1H - T1K;
 | |
| 			 T2y = T2v + T2s;
 | |
| 			 Rm[0] = T2x - T2y;
 | |
| 			 Rp[WS(rs, 5)] = T2x + T2y;
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E T27, T2a, T2z, T2C;
 | |
| 			 T27 = T25 - T26;
 | |
| 			 T2a = T28 - T29;
 | |
| 			 Ip[WS(rs, 1)] = T27 + T2a;
 | |
| 			 Im[WS(rs, 4)] = T2a - T27;
 | |
| 			 T2z = T2b - T2c;
 | |
| 			 T2C = T2A - T2B;
 | |
| 			 Rm[WS(rs, 4)] = T2z - T2C;
 | |
| 			 Rp[WS(rs, 1)] = T2z + T2C;
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E T2d, T2e, T2D, T2E;
 | |
| 			 T2d = T2b + T2c;
 | |
| 			 T2e = T29 + T28;
 | |
| 			 Rm[WS(rs, 1)] = T2d - T2e;
 | |
| 			 Rp[WS(rs, 4)] = T2d + T2e;
 | |
| 			 T2D = T26 + T25;
 | |
| 			 T2E = T2A + T2B;
 | |
| 			 Ip[WS(rs, 4)] = T2D + T2E;
 | |
| 			 Im[WS(rs, 1)] = T2E - T2D;
 | |
| 		    }
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const tw_instr twinstr[] = {
 | |
|      { TW_FULL, 1, 12 },
 | |
|      { TW_NEXT, 1, 0 }
 | |
| };
 | |
| 
 | |
| static const hc2c_desc desc = { 12, "hc2cfdft_12", twinstr, &GENUS, { 112, 46, 30, 0 } };
 | |
| 
 | |
| void X(codelet_hc2cfdft_12) (planner *p) {
 | |
|      X(khc2c_register) (p, hc2cfdft_12, &desc, HC2C_VIA_DFT);
 | |
| }
 | |
| #endif
 | 
