672 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			672 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* infcover.c -- test zlib's inflate routines with full code coverage
 | |
|  * Copyright (C) 2011, 2016 Mark Adler
 | |
|  * For conditions of distribution and use, see copyright notice in zlib.h
 | |
|  */
 | |
| 
 | |
| /* to use, do: ./configure --cover && make cover */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <assert.h>
 | |
| #include "zlib.h"
 | |
| 
 | |
| /* get definition of internal structure so we can mess with it (see pull()),
 | |
|    and so we can call inflate_trees() (see cover5()) */
 | |
| #define ZLIB_INTERNAL
 | |
| #include "inftrees.h"
 | |
| #include "inflate.h"
 | |
| 
 | |
| #define local static
 | |
| 
 | |
| /* -- memory tracking routines -- */
 | |
| 
 | |
| /*
 | |
|    These memory tracking routines are provided to zlib and track all of zlib's
 | |
|    allocations and deallocations, check for LIFO operations, keep a current
 | |
|    and high water mark of total bytes requested, optionally set a limit on the
 | |
|    total memory that can be allocated, and when done check for memory leaks.
 | |
| 
 | |
|    They are used as follows:
 | |
| 
 | |
|    z_stream strm;
 | |
|    mem_setup(&strm)         initializes the memory tracking and sets the
 | |
|                             zalloc, zfree, and opaque members of strm to use
 | |
|                             memory tracking for all zlib operations on strm
 | |
|    mem_limit(&strm, limit)  sets a limit on the total bytes requested -- a
 | |
|                             request that exceeds this limit will result in an
 | |
|                             allocation failure (returns NULL) -- setting the
 | |
|                             limit to zero means no limit, which is the default
 | |
|                             after mem_setup()
 | |
|    mem_used(&strm, "msg")   prints to stderr "msg" and the total bytes used
 | |
|    mem_high(&strm, "msg")   prints to stderr "msg" and the high water mark
 | |
|    mem_done(&strm, "msg")   ends memory tracking, releases all allocations
 | |
|                             for the tracking as well as leaked zlib blocks, if
 | |
|                             any.  If there was anything unusual, such as leaked
 | |
|                             blocks, non-FIFO frees, or frees of addresses not
 | |
|                             allocated, then "msg" and information about the
 | |
|                             problem is printed to stderr.  If everything is
 | |
|                             normal, nothing is printed. mem_done resets the
 | |
|                             strm members to Z_NULL to use the default memory
 | |
|                             allocation routines on the next zlib initialization
 | |
|                             using strm.
 | |
|  */
 | |
| 
 | |
| /* these items are strung together in a linked list, one for each allocation */
 | |
| struct mem_item {
 | |
|     void *ptr;                  /* pointer to allocated memory */
 | |
|     size_t size;                /* requested size of allocation */
 | |
|     struct mem_item *next;      /* pointer to next item in list, or NULL */
 | |
| };
 | |
| 
 | |
| /* this structure is at the root of the linked list, and tracks statistics */
 | |
| struct mem_zone {
 | |
|     struct mem_item *first;     /* pointer to first item in list, or NULL */
 | |
|     size_t total, highwater;    /* total allocations, and largest total */
 | |
|     size_t limit;               /* memory allocation limit, or 0 if no limit */
 | |
|     int notlifo, rogue;         /* counts of non-LIFO frees and rogue frees */
 | |
| };
 | |
| 
 | |
| /* memory allocation routine to pass to zlib */
 | |
| local void *mem_alloc(void *mem, unsigned count, unsigned size)
 | |
| {
 | |
|     void *ptr;
 | |
|     struct mem_item *item;
 | |
|     struct mem_zone *zone = mem;
 | |
|     size_t len = count * (size_t)size;
 | |
| 
 | |
|     /* induced allocation failure */
 | |
|     if (zone == NULL || (zone->limit && zone->total + len > zone->limit))
 | |
|         return NULL;
 | |
| 
 | |
|     /* perform allocation using the standard library, fill memory with a
 | |
|        non-zero value to make sure that the code isn't depending on zeros */
 | |
|     ptr = malloc(len);
 | |
|     if (ptr == NULL)
 | |
|         return NULL;
 | |
|     memset(ptr, 0xa5, len);
 | |
| 
 | |
|     /* create a new item for the list */
 | |
|     item = malloc(sizeof(struct mem_item));
 | |
|     if (item == NULL) {
 | |
|         free(ptr);
 | |
|         return NULL;
 | |
|     }
 | |
|     item->ptr = ptr;
 | |
|     item->size = len;
 | |
| 
 | |
|     /* insert item at the beginning of the list */
 | |
|     item->next = zone->first;
 | |
|     zone->first = item;
 | |
| 
 | |
|     /* update the statistics */
 | |
|     zone->total += item->size;
 | |
|     if (zone->total > zone->highwater)
 | |
|         zone->highwater = zone->total;
 | |
| 
 | |
|     /* return the allocated memory */
 | |
|     return ptr;
 | |
| }
 | |
| 
 | |
| /* memory free routine to pass to zlib */
 | |
| local void mem_free(void *mem, void *ptr)
 | |
| {
 | |
|     struct mem_item *item, *next;
 | |
|     struct mem_zone *zone = mem;
 | |
| 
 | |
|     /* if no zone, just do a free */
 | |
|     if (zone == NULL) {
 | |
|         free(ptr);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* point next to the item that matches ptr, or NULL if not found -- remove
 | |
|        the item from the linked list if found */
 | |
|     next = zone->first;
 | |
|     if (next) {
 | |
|         if (next->ptr == ptr)
 | |
|             zone->first = next->next;   /* first one is it, remove from list */
 | |
|         else {
 | |
|             do {                        /* search the linked list */
 | |
|                 item = next;
 | |
|                 next = item->next;
 | |
|             } while (next != NULL && next->ptr != ptr);
 | |
|             if (next) {                 /* if found, remove from linked list */
 | |
|                 item->next = next->next;
 | |
|                 zone->notlifo++;        /* not a LIFO free */
 | |
|             }
 | |
| 
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* if found, update the statistics and free the item */
 | |
|     if (next) {
 | |
|         zone->total -= next->size;
 | |
|         free(next);
 | |
|     }
 | |
| 
 | |
|     /* if not found, update the rogue count */
 | |
|     else
 | |
|         zone->rogue++;
 | |
| 
 | |
|     /* in any case, do the requested free with the standard library function */
 | |
|     free(ptr);
 | |
| }
 | |
| 
 | |
| /* set up a controlled memory allocation space for monitoring, set the stream
 | |
|    parameters to the controlled routines, with opaque pointing to the space */
 | |
| local void mem_setup(z_stream *strm)
 | |
| {
 | |
|     struct mem_zone *zone;
 | |
| 
 | |
|     zone = malloc(sizeof(struct mem_zone));
 | |
|     assert(zone != NULL);
 | |
|     zone->first = NULL;
 | |
|     zone->total = 0;
 | |
|     zone->highwater = 0;
 | |
|     zone->limit = 0;
 | |
|     zone->notlifo = 0;
 | |
|     zone->rogue = 0;
 | |
|     strm->opaque = zone;
 | |
|     strm->zalloc = mem_alloc;
 | |
|     strm->zfree = mem_free;
 | |
| }
 | |
| 
 | |
| /* set a limit on the total memory allocation, or 0 to remove the limit */
 | |
| local void mem_limit(z_stream *strm, size_t limit)
 | |
| {
 | |
|     struct mem_zone *zone = strm->opaque;
 | |
| 
 | |
|     zone->limit = limit;
 | |
| }
 | |
| 
 | |
| /* show the current total requested allocations in bytes */
 | |
| local void mem_used(z_stream *strm, char *prefix)
 | |
| {
 | |
|     struct mem_zone *zone = strm->opaque;
 | |
| 
 | |
|     fprintf(stderr, "%s: %lu allocated\n", prefix, zone->total);
 | |
| }
 | |
| 
 | |
| /* show the high water allocation in bytes */
 | |
| local void mem_high(z_stream *strm, char *prefix)
 | |
| {
 | |
|     struct mem_zone *zone = strm->opaque;
 | |
| 
 | |
|     fprintf(stderr, "%s: %lu high water mark\n", prefix, zone->highwater);
 | |
| }
 | |
| 
 | |
| /* release the memory allocation zone -- if there are any surprises, notify */
 | |
| local void mem_done(z_stream *strm, char *prefix)
 | |
| {
 | |
|     int count = 0;
 | |
|     struct mem_item *item, *next;
 | |
|     struct mem_zone *zone = strm->opaque;
 | |
| 
 | |
|     /* show high water mark */
 | |
|     mem_high(strm, prefix);
 | |
| 
 | |
|     /* free leftover allocations and item structures, if any */
 | |
|     item = zone->first;
 | |
|     while (item != NULL) {
 | |
|         free(item->ptr);
 | |
|         next = item->next;
 | |
|         free(item);
 | |
|         item = next;
 | |
|         count++;
 | |
|     }
 | |
| 
 | |
|     /* issue alerts about anything unexpected */
 | |
|     if (count || zone->total)
 | |
|         fprintf(stderr, "** %s: %lu bytes in %d blocks not freed\n",
 | |
|                 prefix, zone->total, count);
 | |
|     if (zone->notlifo)
 | |
|         fprintf(stderr, "** %s: %d frees not LIFO\n", prefix, zone->notlifo);
 | |
|     if (zone->rogue)
 | |
|         fprintf(stderr, "** %s: %d frees not recognized\n",
 | |
|                 prefix, zone->rogue);
 | |
| 
 | |
|     /* free the zone and delete from the stream */
 | |
|     free(zone);
 | |
|     strm->opaque = Z_NULL;
 | |
|     strm->zalloc = Z_NULL;
 | |
|     strm->zfree = Z_NULL;
 | |
| }
 | |
| 
 | |
| /* -- inflate test routines -- */
 | |
| 
 | |
| /* Decode a hexadecimal string, set *len to length, in[] to the bytes.  This
 | |
|    decodes liberally, in that hex digits can be adjacent, in which case two in
 | |
|    a row writes a byte.  Or they can be delimited by any non-hex character,
 | |
|    where the delimiters are ignored except when a single hex digit is followed
 | |
|    by a delimiter, where that single digit writes a byte.  The returned data is
 | |
|    allocated and must eventually be freed.  NULL is returned if out of memory.
 | |
|    If the length is not needed, then len can be NULL. */
 | |
| local unsigned char *h2b(const char *hex, unsigned *len)
 | |
| {
 | |
|     unsigned char *in, *re;
 | |
|     unsigned next, val;
 | |
| 
 | |
|     in = malloc((strlen(hex) + 1) >> 1);
 | |
|     if (in == NULL)
 | |
|         return NULL;
 | |
|     next = 0;
 | |
|     val = 1;
 | |
|     do {
 | |
|         if (*hex >= '0' && *hex <= '9')
 | |
|             val = (val << 4) + *hex - '0';
 | |
|         else if (*hex >= 'A' && *hex <= 'F')
 | |
|             val = (val << 4) + *hex - 'A' + 10;
 | |
|         else if (*hex >= 'a' && *hex <= 'f')
 | |
|             val = (val << 4) + *hex - 'a' + 10;
 | |
|         else if (val != 1 && val < 32)  /* one digit followed by delimiter */
 | |
|             val += 240;                 /* make it look like two digits */
 | |
|         if (val > 255) {                /* have two digits */
 | |
|             in[next++] = val & 0xff;    /* save the decoded byte */
 | |
|             val = 1;                    /* start over */
 | |
|         }
 | |
|     } while (*hex++);       /* go through the loop with the terminating null */
 | |
|     if (len != NULL)
 | |
|         *len = next;
 | |
|     re = realloc(in, next);
 | |
|     return re == NULL ? in : re;
 | |
| }
 | |
| 
 | |
| /* generic inflate() run, where hex is the hexadecimal input data, what is the
 | |
|    text to include in an error message, step is how much input data to feed
 | |
|    inflate() on each call, or zero to feed it all, win is the window bits
 | |
|    parameter to inflateInit2(), len is the size of the output buffer, and err
 | |
|    is the error code expected from the first inflate() call (the second
 | |
|    inflate() call is expected to return Z_STREAM_END).  If win is 47, then
 | |
|    header information is collected with inflateGetHeader().  If a zlib stream
 | |
|    is looking for a dictionary, then an empty dictionary is provided.
 | |
|    inflate() is run until all of the input data is consumed. */
 | |
| local void inf(char *hex, char *what, unsigned step, int win, unsigned len,
 | |
|                int err)
 | |
| {
 | |
|     int ret;
 | |
|     unsigned have;
 | |
|     unsigned char *in, *out;
 | |
|     z_stream strm, copy;
 | |
|     gz_header head;
 | |
| 
 | |
|     mem_setup(&strm);
 | |
|     strm.avail_in = 0;
 | |
|     strm.next_in = Z_NULL;
 | |
|     ret = inflateInit2(&strm, win);
 | |
|     if (ret != Z_OK) {
 | |
|         mem_done(&strm, what);
 | |
|         return;
 | |
|     }
 | |
|     out = malloc(len);                          assert(out != NULL);
 | |
|     if (win == 47) {
 | |
|         head.extra = out;
 | |
|         head.extra_max = len;
 | |
|         head.name = out;
 | |
|         head.name_max = len;
 | |
|         head.comment = out;
 | |
|         head.comm_max = len;
 | |
|         ret = inflateGetHeader(&strm, &head);   assert(ret == Z_OK);
 | |
|     }
 | |
|     in = h2b(hex, &have);                       assert(in != NULL);
 | |
|     if (step == 0 || step > have)
 | |
|         step = have;
 | |
|     strm.avail_in = step;
 | |
|     have -= step;
 | |
|     strm.next_in = in;
 | |
|     do {
 | |
|         strm.avail_out = len;
 | |
|         strm.next_out = out;
 | |
|         ret = inflate(&strm, Z_NO_FLUSH);       assert(err == 9 || ret == err);
 | |
|         if (ret != Z_OK && ret != Z_BUF_ERROR && ret != Z_NEED_DICT)
 | |
|             break;
 | |
|         if (ret == Z_NEED_DICT) {
 | |
|             ret = inflateSetDictionary(&strm, in, 1);
 | |
|                                                 assert(ret == Z_DATA_ERROR);
 | |
|             mem_limit(&strm, 1);
 | |
|             ret = inflateSetDictionary(&strm, out, 0);
 | |
|                                                 assert(ret == Z_MEM_ERROR);
 | |
|             mem_limit(&strm, 0);
 | |
|             ((struct inflate_state *)strm.state)->mode = DICT;
 | |
|             ret = inflateSetDictionary(&strm, out, 0);
 | |
|                                                 assert(ret == Z_OK);
 | |
|             ret = inflate(&strm, Z_NO_FLUSH);   assert(ret == Z_BUF_ERROR);
 | |
|         }
 | |
|         ret = inflateCopy(©, &strm);        assert(ret == Z_OK);
 | |
|         ret = inflateEnd(©);                assert(ret == Z_OK);
 | |
|         err = 9;                        /* don't care next time around */
 | |
|         have += strm.avail_in;
 | |
|         strm.avail_in = step > have ? have : step;
 | |
|         have -= strm.avail_in;
 | |
|     } while (strm.avail_in);
 | |
|     free(in);
 | |
|     free(out);
 | |
|     ret = inflateReset2(&strm, -8);             assert(ret == Z_OK);
 | |
|     ret = inflateEnd(&strm);                    assert(ret == Z_OK);
 | |
|     mem_done(&strm, what);
 | |
| }
 | |
| 
 | |
| /* cover all of the lines in inflate.c up to inflate() */
 | |
| local void cover_support(void)
 | |
| {
 | |
|     int ret;
 | |
|     z_stream strm;
 | |
| 
 | |
|     mem_setup(&strm);
 | |
|     strm.avail_in = 0;
 | |
|     strm.next_in = Z_NULL;
 | |
|     ret = inflateInit(&strm);                   assert(ret == Z_OK);
 | |
|     mem_used(&strm, "inflate init");
 | |
|     ret = inflatePrime(&strm, 5, 31);           assert(ret == Z_OK);
 | |
|     ret = inflatePrime(&strm, -1, 0);           assert(ret == Z_OK);
 | |
|     ret = inflateSetDictionary(&strm, Z_NULL, 0);
 | |
|                                                 assert(ret == Z_STREAM_ERROR);
 | |
|     ret = inflateEnd(&strm);                    assert(ret == Z_OK);
 | |
|     mem_done(&strm, "prime");
 | |
| 
 | |
|     inf("63 0", "force window allocation", 0, -15, 1, Z_OK);
 | |
|     inf("63 18 5", "force window replacement", 0, -8, 259, Z_OK);
 | |
|     inf("63 18 68 30 d0 0 0", "force split window update", 4, -8, 259, Z_OK);
 | |
|     inf("3 0", "use fixed blocks", 0, -15, 1, Z_STREAM_END);
 | |
|     inf("", "bad window size", 0, 1, 0, Z_STREAM_ERROR);
 | |
| 
 | |
|     mem_setup(&strm);
 | |
|     strm.avail_in = 0;
 | |
|     strm.next_in = Z_NULL;
 | |
|     ret = inflateInit_(&strm, ZLIB_VERSION - 1, (int)sizeof(z_stream));
 | |
|                                                 assert(ret == Z_VERSION_ERROR);
 | |
|     mem_done(&strm, "wrong version");
 | |
| 
 | |
|     strm.avail_in = 0;
 | |
|     strm.next_in = Z_NULL;
 | |
|     ret = inflateInit(&strm);                   assert(ret == Z_OK);
 | |
|     ret = inflateEnd(&strm);                    assert(ret == Z_OK);
 | |
|     fputs("inflate built-in memory routines\n", stderr);
 | |
| }
 | |
| 
 | |
| /* cover all inflate() header and trailer cases and code after inflate() */
 | |
| local void cover_wrap(void)
 | |
| {
 | |
|     int ret;
 | |
|     z_stream strm, copy;
 | |
|     unsigned char dict[257];
 | |
| 
 | |
|     ret = inflate(Z_NULL, 0);                   assert(ret == Z_STREAM_ERROR);
 | |
|     ret = inflateEnd(Z_NULL);                   assert(ret == Z_STREAM_ERROR);
 | |
|     ret = inflateCopy(Z_NULL, Z_NULL);          assert(ret == Z_STREAM_ERROR);
 | |
|     fputs("inflate bad parameters\n", stderr);
 | |
| 
 | |
|     inf("1f 8b 0 0", "bad gzip method", 0, 31, 0, Z_DATA_ERROR);
 | |
|     inf("1f 8b 8 80", "bad gzip flags", 0, 31, 0, Z_DATA_ERROR);
 | |
|     inf("77 85", "bad zlib method", 0, 15, 0, Z_DATA_ERROR);
 | |
|     inf("8 99", "set window size from header", 0, 0, 0, Z_OK);
 | |
|     inf("78 9c", "bad zlib window size", 0, 8, 0, Z_DATA_ERROR);
 | |
|     inf("78 9c 63 0 0 0 1 0 1", "check adler32", 0, 15, 1, Z_STREAM_END);
 | |
|     inf("1f 8b 8 1e 0 0 0 0 0 0 1 0 0 0 0 0 0", "bad header crc", 0, 47, 1,
 | |
|         Z_DATA_ERROR);
 | |
|     inf("1f 8b 8 2 0 0 0 0 0 0 1d 26 3 0 0 0 0 0 0 0 0 0", "check gzip length",
 | |
|         0, 47, 0, Z_STREAM_END);
 | |
|     inf("78 90", "bad zlib header check", 0, 47, 0, Z_DATA_ERROR);
 | |
|     inf("8 b8 0 0 0 1", "need dictionary", 0, 8, 0, Z_NEED_DICT);
 | |
|     inf("78 9c 63 0", "compute adler32", 0, 15, 1, Z_OK);
 | |
| 
 | |
|     mem_setup(&strm);
 | |
|     strm.avail_in = 0;
 | |
|     strm.next_in = Z_NULL;
 | |
|     ret = inflateInit2(&strm, -8);
 | |
|     strm.avail_in = 2;
 | |
|     strm.next_in = (void *)"\x63";
 | |
|     strm.avail_out = 1;
 | |
|     strm.next_out = (void *)&ret;
 | |
|     mem_limit(&strm, 1);
 | |
|     ret = inflate(&strm, Z_NO_FLUSH);           assert(ret == Z_MEM_ERROR);
 | |
|     ret = inflate(&strm, Z_NO_FLUSH);           assert(ret == Z_MEM_ERROR);
 | |
|     mem_limit(&strm, 0);
 | |
|     memset(dict, 0, 257);
 | |
|     ret = inflateSetDictionary(&strm, dict, 257);
 | |
|                                                 assert(ret == Z_OK);
 | |
|     mem_limit(&strm, (sizeof(struct inflate_state) << 1) + 256);
 | |
|     ret = inflatePrime(&strm, 16, 0);           assert(ret == Z_OK);
 | |
|     strm.avail_in = 2;
 | |
|     strm.next_in = (void *)"\x80";
 | |
|     ret = inflateSync(&strm);                   assert(ret == Z_DATA_ERROR);
 | |
|     ret = inflate(&strm, Z_NO_FLUSH);           assert(ret == Z_STREAM_ERROR);
 | |
|     strm.avail_in = 4;
 | |
|     strm.next_in = (void *)"\0\0\xff\xff";
 | |
|     ret = inflateSync(&strm);                   assert(ret == Z_OK);
 | |
|     (void)inflateSyncPoint(&strm);
 | |
|     ret = inflateCopy(©, &strm);            assert(ret == Z_MEM_ERROR);
 | |
|     mem_limit(&strm, 0);
 | |
|     ret = inflateUndermine(&strm, 1);           assert(ret == Z_DATA_ERROR);
 | |
|     (void)inflateMark(&strm);
 | |
|     ret = inflateEnd(&strm);                    assert(ret == Z_OK);
 | |
|     mem_done(&strm, "miscellaneous, force memory errors");
 | |
| }
 | |
| 
 | |
| /* input and output functions for inflateBack() */
 | |
| local unsigned pull(void *desc, unsigned char **buf)
 | |
| {
 | |
|     static unsigned int next = 0;
 | |
|     static unsigned char dat[] = {0x63, 0, 2, 0};
 | |
|     struct inflate_state *state;
 | |
| 
 | |
|     if (desc == Z_NULL) {
 | |
|         next = 0;
 | |
|         return 0;   /* no input (already provided at next_in) */
 | |
|     }
 | |
|     state = (void *)((z_stream *)desc)->state;
 | |
|     if (state != Z_NULL)
 | |
|         state->mode = SYNC;     /* force an otherwise impossible situation */
 | |
|     return next < sizeof(dat) ? (*buf = dat + next++, 1) : 0;
 | |
| }
 | |
| 
 | |
| local int push(void *desc, unsigned char *buf, unsigned len)
 | |
| {
 | |
|     buf += len;
 | |
|     return desc != Z_NULL;      /* force error if desc not null */
 | |
| }
 | |
| 
 | |
| /* cover inflateBack() up to common deflate data cases and after those */
 | |
| local void cover_back(void)
 | |
| {
 | |
|     int ret;
 | |
|     z_stream strm;
 | |
|     unsigned char win[32768];
 | |
| 
 | |
|     ret = inflateBackInit_(Z_NULL, 0, win, 0, 0);
 | |
|                                                 assert(ret == Z_VERSION_ERROR);
 | |
|     ret = inflateBackInit(Z_NULL, 0, win);      assert(ret == Z_STREAM_ERROR);
 | |
|     ret = inflateBack(Z_NULL, Z_NULL, Z_NULL, Z_NULL, Z_NULL);
 | |
|                                                 assert(ret == Z_STREAM_ERROR);
 | |
|     ret = inflateBackEnd(Z_NULL);               assert(ret == Z_STREAM_ERROR);
 | |
|     fputs("inflateBack bad parameters\n", stderr);
 | |
| 
 | |
|     mem_setup(&strm);
 | |
|     ret = inflateBackInit(&strm, 15, win);      assert(ret == Z_OK);
 | |
|     strm.avail_in = 2;
 | |
|     strm.next_in = (void *)"\x03";
 | |
|     ret = inflateBack(&strm, pull, Z_NULL, push, Z_NULL);
 | |
|                                                 assert(ret == Z_STREAM_END);
 | |
|         /* force output error */
 | |
|     strm.avail_in = 3;
 | |
|     strm.next_in = (void *)"\x63\x00";
 | |
|     ret = inflateBack(&strm, pull, Z_NULL, push, &strm);
 | |
|                                                 assert(ret == Z_BUF_ERROR);
 | |
|         /* force mode error by mucking with state */
 | |
|     ret = inflateBack(&strm, pull, &strm, push, Z_NULL);
 | |
|                                                 assert(ret == Z_STREAM_ERROR);
 | |
|     ret = inflateBackEnd(&strm);                assert(ret == Z_OK);
 | |
|     mem_done(&strm, "inflateBack bad state");
 | |
| 
 | |
|     ret = inflateBackInit(&strm, 15, win);      assert(ret == Z_OK);
 | |
|     ret = inflateBackEnd(&strm);                assert(ret == Z_OK);
 | |
|     fputs("inflateBack built-in memory routines\n", stderr);
 | |
| }
 | |
| 
 | |
| /* do a raw inflate of data in hexadecimal with both inflate and inflateBack */
 | |
| local int try(char *hex, char *id, int err)
 | |
| {
 | |
|     int ret;
 | |
|     unsigned len, size;
 | |
|     unsigned char *in, *out, *win;
 | |
|     char *prefix;
 | |
|     z_stream strm;
 | |
| 
 | |
|     /* convert to hex */
 | |
|     in = h2b(hex, &len);
 | |
|     assert(in != NULL);
 | |
| 
 | |
|     /* allocate work areas */
 | |
|     size = len << 3;
 | |
|     out = malloc(size);
 | |
|     assert(out != NULL);
 | |
|     win = malloc(32768);
 | |
|     assert(win != NULL);
 | |
|     prefix = malloc(strlen(id) + 6);
 | |
|     assert(prefix != NULL);
 | |
| 
 | |
|     /* first with inflate */
 | |
|     strcpy(prefix, id);
 | |
|     strcat(prefix, "-late");
 | |
|     mem_setup(&strm);
 | |
|     strm.avail_in = 0;
 | |
|     strm.next_in = Z_NULL;
 | |
|     ret = inflateInit2(&strm, err < 0 ? 47 : -15);
 | |
|     assert(ret == Z_OK);
 | |
|     strm.avail_in = len;
 | |
|     strm.next_in = in;
 | |
|     do {
 | |
|         strm.avail_out = size;
 | |
|         strm.next_out = out;
 | |
|         ret = inflate(&strm, Z_TREES);
 | |
|         assert(ret != Z_STREAM_ERROR && ret != Z_MEM_ERROR);
 | |
|         if (ret == Z_DATA_ERROR || ret == Z_NEED_DICT)
 | |
|             break;
 | |
|     } while (strm.avail_in || strm.avail_out == 0);
 | |
|     if (err) {
 | |
|         assert(ret == Z_DATA_ERROR);
 | |
|         assert(strcmp(id, strm.msg) == 0);
 | |
|     }
 | |
|     inflateEnd(&strm);
 | |
|     mem_done(&strm, prefix);
 | |
| 
 | |
|     /* then with inflateBack */
 | |
|     if (err >= 0) {
 | |
|         strcpy(prefix, id);
 | |
|         strcat(prefix, "-back");
 | |
|         mem_setup(&strm);
 | |
|         ret = inflateBackInit(&strm, 15, win);
 | |
|         assert(ret == Z_OK);
 | |
|         strm.avail_in = len;
 | |
|         strm.next_in = in;
 | |
|         ret = inflateBack(&strm, pull, Z_NULL, push, Z_NULL);
 | |
|         assert(ret != Z_STREAM_ERROR);
 | |
|         if (err) {
 | |
|             assert(ret == Z_DATA_ERROR);
 | |
|             assert(strcmp(id, strm.msg) == 0);
 | |
|         }
 | |
|         inflateBackEnd(&strm);
 | |
|         mem_done(&strm, prefix);
 | |
|     }
 | |
| 
 | |
|     /* clean up */
 | |
|     free(prefix);
 | |
|     free(win);
 | |
|     free(out);
 | |
|     free(in);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* cover deflate data cases in both inflate() and inflateBack() */
 | |
| local void cover_inflate(void)
 | |
| {
 | |
|     try("0 0 0 0 0", "invalid stored block lengths", 1);
 | |
|     try("3 0", "fixed", 0);
 | |
|     try("6", "invalid block type", 1);
 | |
|     try("1 1 0 fe ff 0", "stored", 0);
 | |
|     try("fc 0 0", "too many length or distance symbols", 1);
 | |
|     try("4 0 fe ff", "invalid code lengths set", 1);
 | |
|     try("4 0 24 49 0", "invalid bit length repeat", 1);
 | |
|     try("4 0 24 e9 ff ff", "invalid bit length repeat", 1);
 | |
|     try("4 0 24 e9 ff 6d", "invalid code -- missing end-of-block", 1);
 | |
|     try("4 80 49 92 24 49 92 24 71 ff ff 93 11 0",
 | |
|         "invalid literal/lengths set", 1);
 | |
|     try("4 80 49 92 24 49 92 24 f b4 ff ff c3 84", "invalid distances set", 1);
 | |
|     try("4 c0 81 8 0 0 0 0 20 7f eb b 0 0", "invalid literal/length code", 1);
 | |
|     try("2 7e ff ff", "invalid distance code", 1);
 | |
|     try("c c0 81 0 0 0 0 0 90 ff 6b 4 0", "invalid distance too far back", 1);
 | |
| 
 | |
|     /* also trailer mismatch just in inflate() */
 | |
|     try("1f 8b 8 0 0 0 0 0 0 0 3 0 0 0 0 1", "incorrect data check", -1);
 | |
|     try("1f 8b 8 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1",
 | |
|         "incorrect length check", -1);
 | |
|     try("5 c0 21 d 0 0 0 80 b0 fe 6d 2f 91 6c", "pull 17", 0);
 | |
|     try("5 e0 81 91 24 cb b2 2c 49 e2 f 2e 8b 9a 47 56 9f fb fe ec d2 ff 1f",
 | |
|         "long code", 0);
 | |
|     try("ed c0 1 1 0 0 0 40 20 ff 57 1b 42 2c 4f", "length extra", 0);
 | |
|     try("ed cf c1 b1 2c 47 10 c4 30 fa 6f 35 1d 1 82 59 3d fb be 2e 2a fc f c",
 | |
|         "long distance and extra", 0);
 | |
|     try("ed c0 81 0 0 0 0 80 a0 fd a9 17 a9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 "
 | |
|         "0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6", "window end", 0);
 | |
|     inf("2 8 20 80 0 3 0", "inflate_fast TYPE return", 0, -15, 258,
 | |
|         Z_STREAM_END);
 | |
|     inf("63 18 5 40 c 0", "window wrap", 3, -8, 300, Z_OK);
 | |
| }
 | |
| 
 | |
| /* cover remaining lines in inftrees.c */
 | |
| local void cover_trees(void)
 | |
| {
 | |
|     int ret;
 | |
|     unsigned bits;
 | |
|     unsigned short lens[16], work[16];
 | |
|     code *next, table[ENOUGH_DISTS];
 | |
| 
 | |
|     /* we need to call inflate_table() directly in order to manifest not-
 | |
|        enough errors, since zlib insures that enough is always enough */
 | |
|     for (bits = 0; bits < 15; bits++)
 | |
|         lens[bits] = (unsigned short)(bits + 1);
 | |
|     lens[15] = 15;
 | |
|     next = table;
 | |
|     bits = 15;
 | |
|     ret = inflate_table(DISTS, lens, 16, &next, &bits, work);
 | |
|                                                 assert(ret == 1);
 | |
|     next = table;
 | |
|     bits = 1;
 | |
|     ret = inflate_table(DISTS, lens, 16, &next, &bits, work);
 | |
|                                                 assert(ret == 1);
 | |
|     fputs("inflate_table not enough errors\n", stderr);
 | |
| }
 | |
| 
 | |
| /* cover remaining inffast.c decoding and window copying */
 | |
| local void cover_fast(void)
 | |
| {
 | |
|     inf("e5 e0 81 ad 6d cb b2 2c c9 01 1e 59 63 ae 7d ee fb 4d fd b5 35 41 68"
 | |
|         " ff 7f 0f 0 0 0", "fast length extra bits", 0, -8, 258, Z_DATA_ERROR);
 | |
|     inf("25 fd 81 b5 6d 59 b6 6a 49 ea af 35 6 34 eb 8c b9 f6 b9 1e ef 67 49"
 | |
|         " 50 fe ff ff 3f 0 0", "fast distance extra bits", 0, -8, 258,
 | |
|         Z_DATA_ERROR);
 | |
|     inf("3 7e 0 0 0 0 0", "fast invalid distance code", 0, -8, 258,
 | |
|         Z_DATA_ERROR);
 | |
|     inf("1b 7 0 0 0 0 0", "fast invalid literal/length code", 0, -8, 258,
 | |
|         Z_DATA_ERROR);
 | |
|     inf("d c7 1 ae eb 38 c 4 41 a0 87 72 de df fb 1f b8 36 b1 38 5d ff ff 0",
 | |
|         "fast 2nd level codes and too far back", 0, -8, 258, Z_DATA_ERROR);
 | |
|     inf("63 18 5 8c 10 8 0 0 0 0", "very common case", 0, -8, 259, Z_OK);
 | |
|     inf("63 60 60 18 c9 0 8 18 18 18 26 c0 28 0 29 0 0 0",
 | |
|         "contiguous and wrap around window", 6, -8, 259, Z_OK);
 | |
|     inf("63 0 3 0 0 0 0 0", "copy direct from output", 0, -8, 259,
 | |
|         Z_STREAM_END);
 | |
| }
 | |
| 
 | |
| int main(void)
 | |
| {
 | |
|     fprintf(stderr, "%s\n", zlibVersion());
 | |
|     cover_support();
 | |
|     cover_wrap();
 | |
|     cover_back();
 | |
|     cover_inflate();
 | |
|     cover_trees();
 | |
|     cover_fast();
 | |
|     return 0;
 | |
| }
 | 
