it appears a one-character typo in the cmake_minimum_required line prevents it from compiling under CMake 4.0. in order to fix that, I had to take this thing out of submodules... it is recommended to do this after you pull; git submodule deinit extern/libsndfile
331 lines
7.6 KiB
C
331 lines
7.6 KiB
C
/*
|
|
* Copyright (c) 2011 Apple Inc. All rights reserved.
|
|
* Copyright (C) 2012-2014 Erik de Castro Lopo <erikd@mega-nerd.com>
|
|
*
|
|
* @APPLE_APACHE_LICENSE_HEADER_START@
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License") ;
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* @APPLE_APACHE_LICENSE_HEADER_END@
|
|
*/
|
|
|
|
/*
|
|
File: matrix_dec.c
|
|
|
|
Contains: ALAC mixing/matrixing decode routines.
|
|
|
|
Copyright: (c) 2004-2011 Apple, Inc.
|
|
*/
|
|
|
|
#include "matrixlib.h"
|
|
#include "ALACAudioTypes.h"
|
|
#include "shift.h"
|
|
|
|
// up to 24-bit "offset" macros for the individual bytes of a 20/24-bit word
|
|
#if TARGET_RT_BIG_ENDIAN
|
|
#define LBYTE 2
|
|
#define MBYTE 1
|
|
#define HBYTE 0
|
|
#else
|
|
#define LBYTE 0
|
|
#define MBYTE 1
|
|
#define HBYTE 2
|
|
#endif
|
|
|
|
/*
|
|
There is no plain middle-side option ; instead there are various mixing
|
|
modes including middle-side, each lossless, as embodied in the mix ()
|
|
and unmix () functions. These functions exploit a generalized middle-side
|
|
transformation:
|
|
|
|
u := [(rL + (m-r)R)/m] ;
|
|
v := L - R ;
|
|
|
|
where [ ] denotes integer floor. The (lossless) inverse is
|
|
|
|
L = u + v - [rV/m] ;
|
|
R = L - v ;
|
|
*/
|
|
|
|
// 16-bit routines
|
|
|
|
void
|
|
unmix16 (const int32_t * u, int32_t * v, int32_t * out, uint32_t stride, int32_t numSamples, int32_t mixbits, int32_t mixres)
|
|
{
|
|
int32_t j ;
|
|
|
|
if (mixres != 0)
|
|
{
|
|
/* matrixed stereo */
|
|
for (j = 0 ; j < numSamples ; j++)
|
|
{
|
|
int32_t l, r ;
|
|
|
|
l = u [j] + v [j] - ((mixres * v [j]) >> mixbits) ;
|
|
r = l - v [j] ;
|
|
|
|
out [0] = arith_shift_left (l, 16) ;
|
|
out [1] = arith_shift_left (r, 16) ;
|
|
out += stride ;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Conventional separated stereo. */
|
|
for (j = 0 ; j < numSamples ; j++)
|
|
{
|
|
out [0] = u [j] << 16 ;
|
|
out [1] = v [j] << 16 ;
|
|
out += stride ;
|
|
}
|
|
}
|
|
}
|
|
|
|
// 20-bit routines
|
|
// - the 20 bits of data are left-justified in 3 bytes of storage but right-aligned for input/output predictor buffers
|
|
|
|
void
|
|
unmix20 (const int32_t * u, int32_t * v, int32_t * out, uint32_t stride, int32_t numSamples, int32_t mixbits, int32_t mixres)
|
|
{
|
|
int32_t j ;
|
|
|
|
if (mixres != 0)
|
|
{
|
|
/* matrixed stereo */
|
|
for (j = 0 ; j < numSamples ; j++)
|
|
{
|
|
int32_t l, r ;
|
|
|
|
l = u [j] + v [j] - ((mixres * v [j]) >> mixbits) ;
|
|
r = l - v [j] ;
|
|
|
|
out [0] = arith_shift_left (l, 12) ;
|
|
out [1] = arith_shift_left (r, 12) ;
|
|
out += stride ;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Conventional separated stereo. */
|
|
for (j = 0 ; j < numSamples ; j++)
|
|
{
|
|
out [0] = arith_shift_left (u [j], 12) ;
|
|
out [1] = arith_shift_left (v [j], 12) ;
|
|
out += stride ;
|
|
}
|
|
}
|
|
}
|
|
|
|
// 24-bit routines
|
|
// - the 24 bits of data are right-justified in the input/output predictor buffers
|
|
|
|
void
|
|
unmix24 (const int32_t * u, int32_t * v, int32_t * out, uint32_t stride, int32_t numSamples,
|
|
int32_t mixbits, int32_t mixres, uint16_t * shiftUV, int32_t bytesShifted)
|
|
{
|
|
int32_t shift = bytesShifted * 8 ;
|
|
int32_t l, r ;
|
|
int32_t j, k ;
|
|
|
|
if (mixres != 0)
|
|
{
|
|
/* matrixed stereo */
|
|
if (bytesShifted != 0)
|
|
{
|
|
for (j = 0, k = 0 ; j < numSamples ; j++, k += 2)
|
|
{
|
|
l = u [j] + v [j] - ((mixres * v [j]) >> mixbits) ;
|
|
r = l - v [j] ;
|
|
|
|
l = arith_shift_left (l, shift) | (uint32_t) shiftUV [k + 0] ;
|
|
r = arith_shift_left (r, shift) | (uint32_t) shiftUV [k + 1] ;
|
|
|
|
out [0] = arith_shift_left (l, 8) ;
|
|
out [1] = arith_shift_left (r, 8) ;
|
|
out += stride ;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (j = 0 ; j < numSamples ; j++)
|
|
{
|
|
l = u [j] + v [j] - ((mixres * v [j]) >> mixbits) ;
|
|
r = l - v [j] ;
|
|
|
|
out [0] = l << 8 ;
|
|
out [1] = r << 8 ;
|
|
out += stride ;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Conventional separated stereo. */
|
|
if (bytesShifted != 0)
|
|
{
|
|
for (j = 0, k = 0 ; j < numSamples ; j++, k += 2)
|
|
{
|
|
l = u [j] ;
|
|
r = v [j] ;
|
|
|
|
l = (l << shift) | (uint32_t) shiftUV [k + 0] ;
|
|
r = (r << shift) | (uint32_t) shiftUV [k + 1] ;
|
|
|
|
out [0] = l << 8 ;
|
|
out [1] = r << 8 ;
|
|
out += stride ;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (j = 0 ; j < numSamples ; j++)
|
|
{
|
|
out [0] = u [j] << 8 ;
|
|
out [1] = v [j] << 8 ;
|
|
out += stride ;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// 32-bit routines
|
|
// - note that these really expect the internal data width to be < 32 but the arrays are 32-bit
|
|
// - otherwise, the calculations might overflow into the 33rd bit and be lost
|
|
// - therefore, these routines deal with the specified "unused lower" bytes in the "shift" buffers
|
|
|
|
void
|
|
unmix32 (const int32_t * u, int32_t * v, int32_t * out, uint32_t stride, int32_t numSamples,
|
|
int32_t mixbits, int32_t mixres, uint16_t * shiftUV, int32_t bytesShifted)
|
|
{
|
|
int32_t shift = bytesShifted * 8 ;
|
|
int32_t l, r ;
|
|
int32_t j, k ;
|
|
|
|
if (mixres != 0)
|
|
{
|
|
//Assert (bytesShifted != 0) ;
|
|
|
|
/* matrixed stereo with shift */
|
|
for (j = 0, k = 0 ; j < numSamples ; j++, k += 2)
|
|
{
|
|
int32_t lt, rt ;
|
|
|
|
lt = u [j] ;
|
|
rt = v [j] ;
|
|
|
|
l = lt + rt - ((mixres * rt) >> mixbits) ;
|
|
r = l - rt ;
|
|
|
|
out [0] = arith_shift_left (l, shift) | (uint32_t) shiftUV [k + 0] ;
|
|
out [1] = arith_shift_left (r, shift) | (uint32_t) shiftUV [k + 1] ;
|
|
out += stride ;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (bytesShifted == 0)
|
|
{
|
|
/* interleaving w/o shift */
|
|
for (j = 0 ; j < numSamples ; j++)
|
|
{
|
|
out [0] = u [j] ;
|
|
out [1] = v [j] ;
|
|
out += stride ;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* interleaving with shift */
|
|
for (j = 0, k = 0 ; j < numSamples ; j++, k += 2)
|
|
{
|
|
out [0] = (u [j] << shift) | (uint32_t) shiftUV [k + 0] ;
|
|
out [1] = (v [j] << shift) | (uint32_t) shiftUV [k + 1] ;
|
|
out += stride ;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// 20/24-bit <-> 32-bit helper routines (not really matrixing but convenient to put here)
|
|
|
|
void
|
|
copyPredictorTo24 (const int32_t * in, int32_t * out, uint32_t stride, int32_t numSamples)
|
|
{
|
|
int32_t j ;
|
|
|
|
for (j = 0 ; j < numSamples ; j++)
|
|
{
|
|
out [0] = in [j] << 8 ;
|
|
out += stride ;
|
|
}
|
|
}
|
|
|
|
void
|
|
copyPredictorTo24Shift (const int32_t * in, uint16_t * shift, int32_t * out, uint32_t stride, int32_t numSamples, int32_t bytesShifted)
|
|
{
|
|
int32_t shiftVal = bytesShifted * 8 ;
|
|
int32_t j ;
|
|
|
|
//Assert (bytesShifted != 0) ;
|
|
|
|
for (j = 0 ; j < numSamples ; j++)
|
|
{
|
|
int32_t val = in [j] ;
|
|
|
|
val = arith_shift_left (val, shiftVal) | (uint32_t) shift [j] ;
|
|
out [0] = arith_shift_left (val, 8) ;
|
|
out += stride ;
|
|
}
|
|
}
|
|
|
|
void
|
|
copyPredictorTo20 (const int32_t * in, int32_t * out, uint32_t stride, int32_t numSamples)
|
|
{
|
|
int32_t j ;
|
|
|
|
// 32-bit predictor values are right-aligned but 20-bit output values should be left-aligned
|
|
// in the 24-bit output buffer
|
|
for (j = 0 ; j < numSamples ; j++)
|
|
{
|
|
out [0] = arith_shift_left (in [j], 12) ;
|
|
out += stride ;
|
|
}
|
|
}
|
|
|
|
void
|
|
copyPredictorTo32 (const int32_t * in, int32_t * out, uint32_t stride, int32_t numSamples)
|
|
{
|
|
int32_t i, j ;
|
|
|
|
// this is only a subroutine to abstract the "iPod can only output 16-bit data" problem
|
|
for (i = 0, j = 0 ; i < numSamples ; i++, j += stride)
|
|
out [j] = arith_shift_left (in [i], 8) ;
|
|
}
|
|
|
|
void
|
|
copyPredictorTo32Shift (const int32_t * in, uint16_t * shift, int32_t * out, uint32_t stride, int32_t numSamples, int32_t bytesShifted)
|
|
{
|
|
int32_t * op = out ;
|
|
uint32_t shiftVal = bytesShifted * 8 ;
|
|
int32_t j ;
|
|
|
|
//Assert (bytesShifted != 0) ;
|
|
|
|
// this is only a subroutine to abstract the "iPod can only output 16-bit data" problem
|
|
for (j = 0 ; j < numSamples ; j++)
|
|
{
|
|
op [0] = arith_shift_left (in [j], shiftVal) | (uint32_t) shift [j] ;
|
|
op += stride ;
|
|
}
|
|
}
|