153 lines
		
	
	
		
			4 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
			
		
		
	
	
			153 lines
		
	
	
		
			4 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
| (*
 | |
|  * Copyright (c) 1997-1999 Massachusetts Institute of Technology
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  *)
 | |
| 
 | |
| (* trigonometric transforms *)
 | |
| open Util
 | |
| 
 | |
| (* DFT of real input *)
 | |
| let rdft sign n input =
 | |
|   Fft.dft sign n (Complex.real @@ input)
 | |
| 
 | |
| (* DFT of hermitian input *)
 | |
| let hdft sign n input =
 | |
|   Fft.dft sign n (Complex.hermitian n input)
 | |
| 
 | |
| (* DFT real transform of vectors of two real numbers,
 | |
|    multiplication by (NaN I), and summation *)
 | |
| let dft_via_rdft sign n input =
 | |
|   let f = rdft sign n input
 | |
|   in fun i -> 
 | |
|     Complex.plus
 | |
|       [Complex.real (f i); 
 | |
|        Complex.times (Complex.nan Expr.I) (Complex.imag (f i))]
 | |
| 
 | |
| (* Discrete Hartley Transform *)
 | |
| let dht sign n input =
 | |
|   let f = Fft.dft sign n (Complex.real @@ input) in
 | |
|   (fun i ->
 | |
|     Complex.plus [Complex.real (f i); Complex.imag (f i)])
 | |
| 
 | |
| let trigI n input = 
 | |
|   let twon = 2 * n in
 | |
|   let input' = Complex.hermitian twon input
 | |
|   in
 | |
|   Fft.dft 1 twon input'
 | |
| 
 | |
| let interleave_zero input = fun i -> 
 | |
|   if (i mod 2) == 0
 | |
|       then Complex.zero
 | |
|   else
 | |
|     input ((i - 1) / 2)
 | |
| 
 | |
| let trigII n input =
 | |
|   let fourn = 4 * n in
 | |
|   let input' = Complex.hermitian fourn (interleave_zero input)
 | |
|   in
 | |
|   Fft.dft 1 fourn input'
 | |
| 
 | |
| let trigIII n input =
 | |
|   let fourn = 4 * n in
 | |
|   let twon = 2 * n in
 | |
|   let input' = Complex.hermitian fourn
 | |
|       (fun i -> 
 | |
| 	if (i == 0) then
 | |
| 	  Complex.real (input 0)
 | |
| 	else if (i == twon) then
 | |
| 	  Complex.uminus (Complex.real (input 0))
 | |
| 	else
 | |
| 	  Complex.antihermitian twon input i)
 | |
|   in
 | |
|   let dft = Fft.dft 1 fourn input'
 | |
|   in fun k -> dft (2 * k + 1)
 | |
| 
 | |
| let zero_extend n input = fun i ->
 | |
|   if (i >= 0 && i < n)
 | |
|   then input i
 | |
|   else Complex.zero
 | |
| 
 | |
| let trigIV n input =
 | |
|   let fourn = 4 * n
 | |
|   and eightn = 8 * n in
 | |
|   let input' = Complex.hermitian eightn 
 | |
|       (zero_extend fourn (Complex.antihermitian fourn 
 | |
| 			 (interleave_zero input)))
 | |
|   in
 | |
|   let dft = Fft.dft 1 eightn input'
 | |
|   in fun k -> dft (2 * k + 1)
 | |
| 
 | |
| let make_dct scale nshift trig =
 | |
|   fun n input ->
 | |
|     trig (n - nshift) (Complex.real @@ (Complex.times scale) @@ 
 | |
| 		       (zero_extend n input))
 | |
| (*
 | |
|  * DCT-I:  y[k] = sum x[j] cos(pi * j * k / n)
 | |
|  *)
 | |
| let dctI = make_dct Complex.one 1 trigI
 | |
| 
 | |
| (*
 | |
|  * DCT-II:  y[k] = sum x[j] cos(pi * (j + 1/2) * k / n)
 | |
|  *)
 | |
| let dctII = make_dct Complex.one 0 trigII
 | |
| 
 | |
| (*
 | |
|  * DCT-III:  y[k] = sum x[j] cos(pi * j * (k + 1/2) / n)
 | |
|  *)
 | |
| let dctIII = make_dct Complex.half 0 trigIII
 | |
| 
 | |
| (*
 | |
|  * DCT-IV  y[k] = sum x[j] cos(pi * (j + 1/2) * (k + 1/2) / n)
 | |
|  *)
 | |
| let dctIV = make_dct Complex.half 0 trigIV
 | |
| 
 | |
| let shift s input = fun i -> input (i - s)
 | |
| 
 | |
| (* DST-x input := TRIG-x (input / i) *)
 | |
| let make_dst scale nshift kshift jshift trig =
 | |
|   fun n input ->
 | |
|     Complex.real @@ 
 | |
|     (shift (- jshift)
 | |
|        (trig (n + nshift) (Complex.uminus @@
 | |
| 			   (Complex.times Complex.i) @@
 | |
| 			   (Complex.times scale) @@ 
 | |
| 			   Complex.real @@ 
 | |
| 			   (shift kshift (zero_extend n input)))))
 | |
| 
 | |
| (*
 | |
|  * DST-I:  y[k] = sum x[j] sin(pi * j * k / n)
 | |
|  *)
 | |
| let dstI = make_dst Complex.one 1 1 1 trigI
 | |
| 
 | |
| (*
 | |
|  * DST-II:  y[k] = sum x[j] sin(pi * (j + 1/2) * k / n)
 | |
|  *)
 | |
| let dstII = make_dst Complex.one 0 0 1 trigII
 | |
| 
 | |
| (*
 | |
|  * DST-III:  y[k] = sum x[j] sin(pi * j * (k + 1/2) / n)
 | |
|  *)
 | |
| let dstIII = make_dst Complex.half 0 1 0 trigIII
 | |
| 
 | |
| (*
 | |
|  * DST-IV  y[k] = sum x[j] sin(pi * (j + 1/2) * (k + 1/2) / n)
 | |
|  *)
 | |
| let dstIV = make_dst Complex.half 0 0 0 trigIV
 | |
| 
 | 
