237 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
			
		
		
	
	
			237 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
(*
 | 
						|
 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
 | 
						|
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 | 
						|
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | 
						|
 *
 | 
						|
 *)
 | 
						|
 | 
						|
(* This file contains the instruction scheduler, which finds an
 | 
						|
   efficient ordering for a given list of instructions.
 | 
						|
 | 
						|
   The scheduler analyzes the DAG (directed acyclic graph) formed by
 | 
						|
   the instruction dependencies, and recursively partitions it.  The
 | 
						|
   resulting schedule data structure expresses a "good" ordering
 | 
						|
   and structure for the computation.
 | 
						|
 | 
						|
   The scheduler makes use of utilties in Dag and other packages to
 | 
						|
   manipulate the Dag and the instruction list. *)
 | 
						|
 | 
						|
open Dag
 | 
						|
(*************************************************
 | 
						|
 *               Dag scheduler
 | 
						|
 *************************************************)
 | 
						|
let to_assignment node = (Expr.Assign (node.assigned, node.expression))
 | 
						|
let makedag l = Dag.makedag 
 | 
						|
    (List.map (function Expr.Assign (v, x) -> (v, x)) l)
 | 
						|
 | 
						|
let return x = x
 | 
						|
let has_color c n = (n.color = c)
 | 
						|
let set_color c n = (n.color <- c)
 | 
						|
let has_either_color c1 c2 n = (n.color = c1 || n.color = c2)
 | 
						|
 | 
						|
let infinity = 100000 
 | 
						|
 | 
						|
let cc dag inputs =
 | 
						|
  begin
 | 
						|
    Dag.for_all dag (fun node -> 
 | 
						|
      node.label <- infinity);
 | 
						|
    
 | 
						|
    (match inputs with 
 | 
						|
      a :: _ -> bfs dag a 0
 | 
						|
    | _ -> failwith "connected");
 | 
						|
 | 
						|
    return
 | 
						|
      ((List.map to_assignment (List.filter (fun n -> n.label < infinity)
 | 
						|
				  (Dag.to_list dag))),
 | 
						|
       (List.map to_assignment (List.filter (fun n -> n.label == infinity) 
 | 
						|
				  (Dag.to_list dag))))
 | 
						|
  end
 | 
						|
 | 
						|
let rec connected_components alist =
 | 
						|
  let dag = makedag alist in
 | 
						|
  let inputs = 
 | 
						|
    List.filter (fun node -> Util.null node.predecessors) 
 | 
						|
      (Dag.to_list dag) in
 | 
						|
  match cc dag inputs with
 | 
						|
    (a, []) -> [a]
 | 
						|
  | (a, b) -> a :: connected_components b
 | 
						|
 | 
						|
let single_load node =
 | 
						|
  match (node.input_variables, node.predecessors) with
 | 
						|
    ([x], []) -> 
 | 
						|
      Variable.is_constant x ||
 | 
						|
      (!Magic.locations_are_special && Variable.is_locative x)
 | 
						|
  | _ -> false
 | 
						|
 | 
						|
let loads_locative node =
 | 
						|
  match (node.input_variables, node.predecessors) with
 | 
						|
    | ([x], []) -> Variable.is_locative x
 | 
						|
    | _ -> false
 | 
						|
 | 
						|
let partition alist =
 | 
						|
  let dag = makedag alist in
 | 
						|
  let dag' = Dag.to_list dag in
 | 
						|
  let inputs = 
 | 
						|
    List.filter (fun node -> Util.null node.predecessors) dag'
 | 
						|
  and outputs = 
 | 
						|
    List.filter (fun node -> Util.null node.successors) dag'
 | 
						|
  and special_inputs =  List.filter single_load dag' in
 | 
						|
  begin
 | 
						|
    
 | 
						|
    let c = match !Magic.schedule_type with
 | 
						|
	| 1 -> RED; (* all nodes in the input partition *)
 | 
						|
	| -1 -> BLUE; (* all nodes in the output partition *)
 | 
						|
	| _ -> BLACK; (* node color determined by bisection algorithm *)
 | 
						|
    in Dag.for_all dag (fun node -> node.color <- c);
 | 
						|
 | 
						|
    Util.for_list inputs (set_color RED);
 | 
						|
 | 
						|
    (*
 | 
						|
       The special inputs are those input nodes that load a single
 | 
						|
       location or twiddle factor.  Special inputs can end up either
 | 
						|
       in the blue or in the red part.  These inputs are special
 | 
						|
       because they inherit a color from their neighbors: If a red
 | 
						|
       node needs a special input, the special input becomes red, but
 | 
						|
       if all successors of a special input are blue, the special
 | 
						|
       input becomes blue.  Outputs are always blue, whether they be
 | 
						|
       special or not.
 | 
						|
 | 
						|
       Because of the processing of special inputs, however, the final
 | 
						|
       partition might end up being composed only of blue nodes (which
 | 
						|
       is incorrect).  In this case we manually reset all inputs
 | 
						|
       (whether special or not) to be red.
 | 
						|
    *)
 | 
						|
 | 
						|
    Util.for_list special_inputs (set_color YELLOW);
 | 
						|
 | 
						|
    Util.for_list outputs (set_color BLUE);
 | 
						|
 | 
						|
    let rec loopi donep = 
 | 
						|
      match (List.filter
 | 
						|
	       (fun node -> (has_color BLACK node) &&
 | 
						|
		 List.for_all (has_either_color RED YELLOW) node.predecessors)
 | 
						|
	       dag') with
 | 
						|
	[] -> if (donep) then () else loopo true
 | 
						|
      |	i -> 
 | 
						|
	  begin
 | 
						|
	    Util.for_list i (fun node -> 
 | 
						|
	      begin
 | 
						|
      		set_color RED node;
 | 
						|
		Util.for_list node.predecessors (set_color RED);
 | 
						|
	      end);
 | 
						|
	    loopo false; 
 | 
						|
	  end
 | 
						|
 | 
						|
    and loopo donep =
 | 
						|
      match (List.filter
 | 
						|
	       (fun node -> (has_either_color BLACK YELLOW node) &&
 | 
						|
		 List.for_all (has_color BLUE) node.successors)
 | 
						|
	       dag') with
 | 
						|
	[] -> if (donep) then () else loopi true
 | 
						|
      |	o ->
 | 
						|
	  begin
 | 
						|
	    Util.for_list o (set_color BLUE);
 | 
						|
	    loopi false; 
 | 
						|
	  end
 | 
						|
 | 
						|
    in loopi false;
 | 
						|
 | 
						|
    (* fix the partition if it is incorrect *)
 | 
						|
    if not (List.exists (has_color RED) dag') then 
 | 
						|
	Util.for_list inputs (set_color RED);
 | 
						|
    
 | 
						|
    return
 | 
						|
      ((List.map to_assignment (List.filter (has_color RED) dag')),
 | 
						|
       (List.map to_assignment (List.filter (has_color BLUE) dag')))
 | 
						|
  end
 | 
						|
 | 
						|
type schedule = 
 | 
						|
    Done
 | 
						|
  | Instr of Expr.assignment
 | 
						|
  | Seq of (schedule * schedule)
 | 
						|
  | Par of schedule list
 | 
						|
 | 
						|
 | 
						|
 | 
						|
(* produce a sequential schedule determined by the user *)
 | 
						|
let rec sequentially = function
 | 
						|
    [] -> Done
 | 
						|
  | a :: b -> Seq (Instr a, sequentially b)
 | 
						|
 | 
						|
let schedule =
 | 
						|
  let rec schedule_alist = function
 | 
						|
    | [] -> Done
 | 
						|
    | [a] -> Instr a
 | 
						|
    | alist -> match connected_components alist with
 | 
						|
	| ([a]) -> schedule_connected a
 | 
						|
	| l -> Par (List.map schedule_alist l)
 | 
						|
 | 
						|
  and schedule_connected alist = 
 | 
						|
    match partition alist with
 | 
						|
    | (a, b) -> Seq (schedule_alist a, schedule_alist b)
 | 
						|
 | 
						|
  in fun x ->
 | 
						|
    let () = Util.info "begin schedule" in
 | 
						|
    let res = schedule_alist x in
 | 
						|
    let () = Util.info "end schedule" in
 | 
						|
    res
 | 
						|
 | 
						|
 | 
						|
(* partition a dag into two parts:
 | 
						|
 | 
						|
   1) the set of loads from locatives and their successors,
 | 
						|
   2) all other nodes
 | 
						|
 | 
						|
   This step separates the ``body'' of the dag, which computes the
 | 
						|
   actual fft, from the ``precomputations'' part, which computes e.g.
 | 
						|
   twiddle factors.
 | 
						|
*)
 | 
						|
let partition_precomputations alist =
 | 
						|
  let dag = makedag alist in
 | 
						|
  let dag' = Dag.to_list dag in
 | 
						|
  let loads =  List.filter loads_locative dag' in
 | 
						|
    begin
 | 
						|
      
 | 
						|
      Dag.for_all dag (set_color BLUE);
 | 
						|
      Util.for_list loads (set_color RED);
 | 
						|
 | 
						|
      let rec loop () = 
 | 
						|
	match (List.filter
 | 
						|
		 (fun node -> (has_color RED node) &&
 | 
						|
		    List.exists (has_color BLUE) node.successors)
 | 
						|
		 dag') with
 | 
						|
	    [] -> ()
 | 
						|
	  |	i -> 
 | 
						|
		  begin
 | 
						|
		    Util.for_list i 
 | 
						|
		      (fun node -> 
 | 
						|
			 Util.for_list node.successors (set_color RED));
 | 
						|
		    loop ()
 | 
						|
		  end
 | 
						|
 | 
						|
      in loop ();
 | 
						|
 | 
						|
	return
 | 
						|
	  ((List.map to_assignment (List.filter (has_color BLUE) dag')),
 | 
						|
	   (List.map to_assignment (List.filter (has_color RED) dag')))
 | 
						|
    end
 | 
						|
 | 
						|
let isolate_precomputations_and_schedule alist =
 | 
						|
  let (a, b) = partition_precomputations alist in
 | 
						|
    Seq (schedule a, schedule b)
 | 
						|
  
 |