381 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			381 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
 | |
| #  error "SSE/SSE2 only works in single/double precision"
 | |
| #endif
 | |
| 
 | |
| #ifdef FFTW_SINGLE
 | |
| #  define DS(d,s) s /* single-precision option */
 | |
| #  define SUFF(name) name ## s
 | |
| #else
 | |
| #  define DS(d,s) d /* double-precision option */
 | |
| #  define SUFF(name) name ## d
 | |
| #endif
 | |
| 
 | |
| #define SIMD_SUFFIX  _sse2  /* for renaming */
 | |
| #define VL DS(1,2)         /* SIMD vector length, in term of complex numbers */
 | |
| #define SIMD_VSTRIDE_OKA(x) DS(SIMD_STRIDE_OKA(x),((x) == 2))
 | |
| #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
 | |
| 
 | |
| #if defined(__GNUC__) && !defined(FFTW_SINGLE) && !defined(__SSE2__)
 | |
| #  error "compiling simd-sse2.h in double precision without -msse2"
 | |
| #elif defined(__GNUC__) && defined(FFTW_SINGLE) && !defined(__SSE__)
 | |
| #  error "compiling simd-sse2.h in single precision without -msse"
 | |
| #endif
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #ifndef inline
 | |
| #define inline __inline
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| /* some versions of glibc's sys/cdefs.h define __inline to be empty,
 | |
|    which is wrong because emmintrin.h defines several inline
 | |
|    procedures */
 | |
| #ifndef _MSC_VER
 | |
| #undef __inline
 | |
| #endif
 | |
| 
 | |
| #ifdef FFTW_SINGLE
 | |
| #  include <xmmintrin.h>
 | |
| #else
 | |
| #  include <emmintrin.h>
 | |
| #endif
 | |
| 
 | |
| typedef DS(__m128d,__m128) V;
 | |
| #define VADD SUFF(_mm_add_p)
 | |
| #define VSUB SUFF(_mm_sub_p)
 | |
| #define VMUL SUFF(_mm_mul_p)
 | |
| #define VXOR SUFF(_mm_xor_p)
 | |
| #define SHUF SUFF(_mm_shuffle_p)
 | |
| #define UNPCKL SUFF(_mm_unpacklo_p)
 | |
| #define UNPCKH SUFF(_mm_unpackhi_p)
 | |
| 
 | |
| #define SHUFVALS(fp0,fp1,fp2,fp3) \
 | |
|    (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
 | |
| 
 | |
| #define VDUPL(x) DS(UNPCKL(x, x), SHUF(x, x, SHUFVALS(0, 0, 2, 2)))
 | |
| #define VDUPH(x) DS(UNPCKH(x, x), SHUF(x, x, SHUFVALS(1, 1, 3, 3)))
 | |
| #define STOREH(a, v) DS(_mm_storeh_pd(a, v), _mm_storeh_pi((__m64 *)(a), v))
 | |
| #define STOREL(a, v) DS(_mm_storel_pd(a, v), _mm_storel_pi((__m64 *)(a), v))
 | |
| 
 | |
| 
 | |
| #ifdef __GNUC__
 | |
|   /*
 | |
|    * gcc-3.3 generates slow code for mm_set_ps (write all elements to
 | |
|    * the stack and load __m128 from the stack).
 | |
|    *
 | |
|    * gcc-3.[34] generates slow code for mm_set_ps1 (load into low element
 | |
|    * and shuffle).
 | |
|    *
 | |
|    * This hack forces gcc to generate a constant __m128 at compile time.
 | |
|    */
 | |
|   union rvec {
 | |
|        R r[DS(2,4)];
 | |
|        V v;
 | |
|   };
 | |
| 
 | |
| #  ifdef FFTW_SINGLE
 | |
| #    define DVK(var, val) V var = __extension__ ({ \
 | |
|          static const union rvec _var = { {val,val,val,val} }; _var.v; })
 | |
| #  else
 | |
| #    define DVK(var, val) V var = __extension__ ({ \
 | |
|          static const union rvec _var = { {val,val} }; _var.v; })
 | |
| #  endif
 | |
| #  define LDK(x) x
 | |
| #else
 | |
| #  define DVK(var, val) const R var = K(val)
 | |
| #  define LDK(x) DS(_mm_set1_pd,_mm_set_ps1)(x)
 | |
| #endif
 | |
| 
 | |
| static inline V LDA(const R *x, INT ivs, const R *aligned_like)
 | |
| {
 | |
|      (void)aligned_like; /* UNUSED */
 | |
|      (void)ivs; /* UNUSED */
 | |
|      return *(const V *)x;
 | |
| }
 | |
| 
 | |
| static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
 | |
| {
 | |
|      (void)aligned_like; /* UNUSED */
 | |
|      (void)ovs; /* UNUSED */
 | |
|      *(V *)x = v;
 | |
| }
 | |
| 
 | |
| #ifdef FFTW_SINGLE
 | |
| 
 | |
| #  ifdef _MSC_VER
 | |
|      /* Temporarily disable the warning "uninitialized local variable
 | |
| 	'name' used" and runtime checks for using a variable before it is
 | |
| 	defined which is erroneously triggered by the LOADL0 / LOADH macros
 | |
| 	as they only modify VAL partly each. */
 | |
| #    ifndef __INTEL_COMPILER
 | |
| #      pragma warning(disable : 4700)
 | |
| #      pragma runtime_checks("u", off)
 | |
| #    endif
 | |
| #  endif
 | |
| #  ifdef __INTEL_COMPILER
 | |
| #    pragma warning(disable : 592)
 | |
| #  endif
 | |
| 
 | |
| static inline V LD(const R *x, INT ivs, const R *aligned_like)
 | |
| {
 | |
|      V var;
 | |
|      (void)aligned_like; /* UNUSED */
 | |
| #  ifdef __GNUC__
 | |
|      /* We use inline asm because gcc-3.x generates slow code for
 | |
| 	_mm_loadh_pi().  gcc-3.x insists upon having an existing variable for
 | |
| 	VAL, which is however never used.  Thus, it generates code to move
 | |
| 	values in and out the variable.  Worse still, gcc-4.0 stores VAL on
 | |
| 	the stack, causing valgrind to complain about uninitialized reads. */  
 | |
|      __asm__("movlps %1, %0\n\tmovhps %2, %0"
 | |
| 	     : "=x"(var) : "m"(x[0]), "m"(x[ivs]));
 | |
| #  else
 | |
| #    define LOADH(addr, val) _mm_loadh_pi(val, (const __m64 *)(addr))
 | |
| #    define LOADL0(addr, val) _mm_loadl_pi(val, (const __m64 *)(addr))
 | |
|      var = LOADL0(x, var);
 | |
|      var = LOADH(x + ivs, var);
 | |
| #  endif
 | |
|      return var;
 | |
| }
 | |
| 
 | |
| #  ifdef _MSC_VER
 | |
| #    ifndef __INTEL_COMPILER
 | |
| #      pragma warning(default : 4700)
 | |
| #      pragma runtime_checks("u", restore)
 | |
| #    endif
 | |
| #  endif
 | |
| #  ifdef __INTEL_COMPILER
 | |
| #    pragma warning(default : 592)
 | |
| #  endif
 | |
| 
 | |
| static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
 | |
| {
 | |
|      (void)aligned_like; /* UNUSED */
 | |
|      /* WARNING: the extra_iter hack depends upon STOREL occurring
 | |
| 	after STOREH */
 | |
|      STOREH(x + ovs, v);
 | |
|      STOREL(x, v);
 | |
| }
 | |
| 
 | |
| #else /* ! FFTW_SINGLE */
 | |
| #  define LD LDA
 | |
| #  define ST STA
 | |
| #endif
 | |
| 
 | |
| #define STM2 DS(STA,ST)
 | |
| #define STN2(x, v0, v1, ovs) /* nop */
 | |
| 
 | |
| #ifdef FFTW_SINGLE
 | |
| #  define STM4(x, v, ovs, aligned_like) /* no-op */
 | |
| /* STN4 is a macro, not a function, thanks to Visual C++ developers
 | |
|    deciding "it would be infrequent that people would want to pass more
 | |
|    than 3 [__m128 parameters] by value."  3 parameters ought to be enough
 | |
|    for anybody. */
 | |
| #  define STN4(x, v0, v1, v2, v3, ovs)			\
 | |
| {							\
 | |
|      V xxx0, xxx1, xxx2, xxx3;				\
 | |
|      xxx0 = UNPCKL(v0, v2);				\
 | |
|      xxx1 = UNPCKH(v0, v2);				\
 | |
|      xxx2 = UNPCKL(v1, v3);				\
 | |
|      xxx3 = UNPCKH(v1, v3);				\
 | |
|      STA(x, UNPCKL(xxx0, xxx2), 0, 0);			\
 | |
|      STA(x + ovs, UNPCKH(xxx0, xxx2), 0, 0);		\
 | |
|      STA(x + 2 * ovs, UNPCKL(xxx1, xxx3), 0, 0);	\
 | |
|      STA(x + 3 * ovs, UNPCKH(xxx1, xxx3), 0, 0);	\
 | |
| }
 | |
| #else /* !FFTW_SINGLE */
 | |
| static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
 | |
| {
 | |
|      (void)aligned_like; /* UNUSED */
 | |
|      STOREL(x, v);
 | |
|      STOREH(x + ovs, v);
 | |
| }
 | |
| #  define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
 | |
| #endif
 | |
| 
 | |
| static inline V FLIP_RI(V x)
 | |
| {
 | |
|      return SHUF(x, x, DS(1, SHUFVALS(1, 0, 3, 2)));
 | |
| }
 | |
| 
 | |
| static inline V VCONJ(V x)
 | |
| {
 | |
|      /* This will produce -0.0f (or -0.0d) even on broken
 | |
|         compilers that do not distinguish +0.0 from -0.0.
 | |
|         I bet some are still around. */
 | |
|      union uvec {
 | |
|           unsigned u[4];
 | |
|           V v;
 | |
|      };
 | |
|      /* it looks like gcc-3.3.5 produces slow code unless PM is
 | |
|         declared static. */
 | |
|      static const union uvec pm = {
 | |
| #ifdef FFTW_SINGLE
 | |
|           { 0x00000000, 0x80000000, 0x00000000, 0x80000000 }
 | |
| #else
 | |
|           { 0x00000000, 0x00000000, 0x00000000, 0x80000000 }
 | |
| #endif
 | |
|      };
 | |
|      return VXOR(pm.v, x);
 | |
| }
 | |
| 
 | |
| static inline V VBYI(V x)
 | |
| {
 | |
|      x = VCONJ(x);
 | |
|      x = FLIP_RI(x);
 | |
|      return x;
 | |
| }
 | |
| 
 | |
| /* FMA support */
 | |
| #define VFMA(a, b, c) VADD(c, VMUL(a, b))
 | |
| #define VFNMS(a, b, c) VSUB(c, VMUL(a, b))
 | |
| #define VFMS(a, b, c) VSUB(VMUL(a, b), c)
 | |
| #define VFMAI(b, c) VADD(c, VBYI(b))
 | |
| #define VFNMSI(b, c) VSUB(c, VBYI(b))
 | |
| #define VFMACONJ(b,c)  VADD(VCONJ(b),c)
 | |
| #define VFMSCONJ(b,c)  VSUB(VCONJ(b),c)
 | |
| #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))
 | |
| 
 | |
| static inline V VZMUL(V tx, V sr)
 | |
| {
 | |
|      V tr = VDUPL(tx);
 | |
|      V ti = VDUPH(tx);
 | |
|      tr = VMUL(sr, tr);
 | |
|      sr = VBYI(sr);
 | |
|      return VFMA(ti, sr, tr);
 | |
| }
 | |
| 
 | |
| static inline V VZMULJ(V tx, V sr)
 | |
| {
 | |
|      V tr = VDUPL(tx);
 | |
|      V ti = VDUPH(tx);
 | |
|      tr = VMUL(sr, tr);
 | |
|      sr = VBYI(sr);
 | |
|      return VFNMS(ti, sr, tr);
 | |
| }
 | |
| 
 | |
| static inline V VZMULI(V tx, V sr)
 | |
| {
 | |
|      V tr = VDUPL(tx);
 | |
|      V ti = VDUPH(tx);
 | |
|      ti = VMUL(ti, sr);
 | |
|      sr = VBYI(sr);
 | |
|      return VFMS(tr, sr, ti);
 | |
| }
 | |
| 
 | |
| static inline V VZMULIJ(V tx, V sr)
 | |
| {
 | |
|      V tr = VDUPL(tx);
 | |
|      V ti = VDUPH(tx);
 | |
|      ti = VMUL(ti, sr);
 | |
|      sr = VBYI(sr);
 | |
|      return VFMA(tr, sr, ti);
 | |
| }
 | |
| 
 | |
| /* twiddle storage #1: compact, slower */
 | |
| #ifdef FFTW_SINGLE
 | |
| #  define VTW1(v,x)  \
 | |
|   {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
 | |
| static inline V BYTW1(const R *t, V sr)
 | |
| {
 | |
|      const V *twp = (const V *)t;
 | |
|      V tx = twp[0];
 | |
|      V tr = UNPCKL(tx, tx);
 | |
|      V ti = UNPCKH(tx, tx);
 | |
|      tr = VMUL(tr, sr);
 | |
|      sr = VBYI(sr);
 | |
|      return VFMA(ti, sr, tr);
 | |
| }
 | |
| static inline V BYTWJ1(const R *t, V sr)
 | |
| {
 | |
|      const V *twp = (const V *)t;
 | |
|      V tx = twp[0];
 | |
|      V tr = UNPCKL(tx, tx);
 | |
|      V ti = UNPCKH(tx, tx);
 | |
|      tr = VMUL(tr, sr);
 | |
|      sr = VBYI(sr);
 | |
|      return VFNMS(ti, sr, tr);
 | |
| }
 | |
| #else /* !FFTW_SINGLE */
 | |
| #  define VTW1(v,x) {TW_CEXP, v, x}
 | |
| static inline V BYTW1(const R *t, V sr)
 | |
| {
 | |
|      V tx = LD(t, 1, t);
 | |
|      return VZMUL(tx, sr);
 | |
| }
 | |
| static inline V BYTWJ1(const R *t, V sr)
 | |
| {
 | |
|      V tx = LD(t, 1, t);
 | |
|      return VZMULJ(tx, sr);
 | |
| }
 | |
| #endif
 | |
| #define TWVL1 (VL)
 | |
| 
 | |
| /* twiddle storage #2: twice the space, faster (when in cache) */
 | |
| #ifdef FFTW_SINGLE
 | |
| #  define VTW2(v,x)							\
 | |
|   {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x},	\
 | |
|   {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
 | |
| #else /* !FFTW_SINGLE */
 | |
| #  define VTW2(v,x)							\
 | |
|   {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
 | |
| #endif
 | |
| #define TWVL2 (2 * VL)
 | |
| static inline V BYTW2(const R *t, V sr)
 | |
| {
 | |
|      const V *twp = (const V *)t;
 | |
|      V si = FLIP_RI(sr);
 | |
|      V tr = twp[0], ti = twp[1];
 | |
|      return VFMA(tr, sr, VMUL(ti, si));
 | |
| }
 | |
| static inline V BYTWJ2(const R *t, V sr)
 | |
| {
 | |
|      const V *twp = (const V *)t;
 | |
|      V si = FLIP_RI(sr);
 | |
|      V tr = twp[0], ti = twp[1];
 | |
|      return VFNMS(ti, si, VMUL(tr, sr));
 | |
| }
 | |
| 
 | |
| /* twiddle storage #3 */
 | |
| #ifdef FFTW_SINGLE
 | |
| #  define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
 | |
| #  define TWVL3 (VL)
 | |
| #else
 | |
| #  define VTW3(v,x) VTW1(v,x)
 | |
| #  define TWVL3 TWVL1
 | |
| #endif
 | |
| 
 | |
| /* twiddle storage for split arrays */
 | |
| #ifdef FFTW_SINGLE
 | |
| #  define VTWS(v,x)							  \
 | |
|     {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
 | |
|     {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
 | |
| #else
 | |
| #  define VTWS(v,x)							  \
 | |
|     {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
 | |
| #endif
 | |
| #define TWVLS (2 * VL)
 | |
| 
 | |
| #define VLEAVE() /* nothing */
 | |
| 
 | |
| #include "simd-common.h"
 | 
