212 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			212 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 | 
						|
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
/* Do a RODFT00 problem via an R2HC problem, with some pre/post-processing.
 | 
						|
 | 
						|
   This code uses the trick from FFTPACK, also documented in a similar
 | 
						|
   form by Numerical Recipes.  Unfortunately, this algorithm seems to
 | 
						|
   have intrinsic numerical problems (similar to those in
 | 
						|
   reodft11e-r2hc.c), possibly due to the fact that it multiplies its
 | 
						|
   input by a sine, causing a loss of precision near the zero.  For
 | 
						|
   transforms of 16k points, it has already lost three or four decimal
 | 
						|
   places of accuracy, which we deem unacceptable.
 | 
						|
 | 
						|
   So, we have abandoned this algorithm in favor of the one in
 | 
						|
   rodft00-r2hc-pad.c, which unfortunately sacrifices 30-50% in speed.
 | 
						|
   The only other alternative in the literature that does not have
 | 
						|
   similar numerical difficulties seems to be the direct adaptation of
 | 
						|
   the Cooley-Tukey decomposition for antisymmetric data, but this
 | 
						|
   would require a whole new set of codelets and it's not clear that
 | 
						|
   it's worth it at this point.  However, we did implement the latter
 | 
						|
   algorithm for the specific case of odd n (logically adapting the
 | 
						|
   split-radix algorithm); see reodft00e-splitradix.c. */
 | 
						|
 | 
						|
#include "reodft/reodft.h"
 | 
						|
 | 
						|
typedef struct {
 | 
						|
     solver super;
 | 
						|
} S;
 | 
						|
 | 
						|
typedef struct {
 | 
						|
     plan_rdft super;
 | 
						|
     plan *cld;
 | 
						|
     twid *td;
 | 
						|
     INT is, os;
 | 
						|
     INT n;
 | 
						|
     INT vl;
 | 
						|
     INT ivs, ovs;
 | 
						|
} P;
 | 
						|
 | 
						|
static void apply(const plan *ego_, R *I, R *O)
 | 
						|
{
 | 
						|
     const P *ego = (const P *) ego_;
 | 
						|
     INT is = ego->is, os = ego->os;
 | 
						|
     INT i, n = ego->n;
 | 
						|
     INT iv, vl = ego->vl;
 | 
						|
     INT ivs = ego->ivs, ovs = ego->ovs;
 | 
						|
     R *W = ego->td->W;
 | 
						|
     R *buf;
 | 
						|
 | 
						|
     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
 | 
						|
 | 
						|
     for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
 | 
						|
	  buf[0] = 0;
 | 
						|
	  for (i = 1; i < n - i; ++i) {
 | 
						|
	       E a, b, apb, amb;
 | 
						|
	       a = I[is * (i - 1)];
 | 
						|
	       b = I[is * ((n - i) - 1)];
 | 
						|
	       apb =  K(2.0) * W[i] * (a + b);
 | 
						|
	       amb = (a - b);
 | 
						|
	       buf[i] = apb + amb;
 | 
						|
	       buf[n - i] = apb - amb;
 | 
						|
	  }
 | 
						|
	  if (i == n - i) {
 | 
						|
	       buf[i] = K(4.0) * I[is * (i - 1)];
 | 
						|
	  }
 | 
						|
	  
 | 
						|
	  {
 | 
						|
	       plan_rdft *cld = (plan_rdft *) ego->cld;
 | 
						|
	       cld->apply((plan *) cld, buf, buf);
 | 
						|
	  }
 | 
						|
	  
 | 
						|
	  /* FIXME: use recursive/cascade summation for better stability? */
 | 
						|
	  O[0] = buf[0] * 0.5;
 | 
						|
	  for (i = 1; i + i < n - 1; ++i) {
 | 
						|
	       INT k = i + i;
 | 
						|
	       O[os * (k - 1)] = -buf[n - i];
 | 
						|
	       O[os * k] = O[os * (k - 2)] + buf[i];
 | 
						|
	  }
 | 
						|
	  if (i + i == n - 1) {
 | 
						|
	       O[os * (n - 2)] = -buf[n - i];
 | 
						|
	  }
 | 
						|
     }
 | 
						|
 | 
						|
     X(ifree)(buf);
 | 
						|
}
 | 
						|
 | 
						|
static void awake(plan *ego_, enum wakefulness wakefulness)
 | 
						|
{
 | 
						|
     P *ego = (P *) ego_;
 | 
						|
     static const tw_instr rodft00e_tw[] = {
 | 
						|
          { TW_SIN, 0, 1 },
 | 
						|
          { TW_NEXT, 1, 0 }
 | 
						|
     };
 | 
						|
 | 
						|
     X(plan_awake)(ego->cld, wakefulness);
 | 
						|
 | 
						|
     X(twiddle_awake)(wakefulness,
 | 
						|
		      &ego->td, rodft00e_tw, 2*ego->n, 1, (ego->n+1)/2);
 | 
						|
}
 | 
						|
 | 
						|
static void destroy(plan *ego_)
 | 
						|
{
 | 
						|
     P *ego = (P *) ego_;
 | 
						|
     X(plan_destroy_internal)(ego->cld);
 | 
						|
}
 | 
						|
 | 
						|
static void print(const plan *ego_, printer *p)
 | 
						|
{
 | 
						|
     const P *ego = (const P *) ego_;
 | 
						|
     p->print(p, "(rodft00e-r2hc-%D%v%(%p%))", ego->n - 1, ego->vl, ego->cld);
 | 
						|
}
 | 
						|
 | 
						|
static int applicable0(const solver *ego_, const problem *p_)
 | 
						|
{
 | 
						|
     const problem_rdft *p = (const problem_rdft *) p_;
 | 
						|
     UNUSED(ego_);
 | 
						|
 | 
						|
     return (1
 | 
						|
	     && p->sz->rnk == 1
 | 
						|
	     && p->vecsz->rnk <= 1
 | 
						|
	     && p->kind[0] == RODFT00
 | 
						|
	  );
 | 
						|
}
 | 
						|
 | 
						|
static int applicable(const solver *ego, const problem *p, const planner *plnr)
 | 
						|
{
 | 
						|
     return (!NO_SLOWP(plnr) && applicable0(ego, p));
 | 
						|
}
 | 
						|
 | 
						|
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
 | 
						|
{
 | 
						|
     P *pln;
 | 
						|
     const problem_rdft *p;
 | 
						|
     plan *cld;
 | 
						|
     R *buf;
 | 
						|
     INT n;
 | 
						|
     opcnt ops;
 | 
						|
 | 
						|
     static const plan_adt padt = {
 | 
						|
	  X(rdft_solve), awake, print, destroy
 | 
						|
     };
 | 
						|
 | 
						|
     if (!applicable(ego_, p_, plnr))
 | 
						|
          return (plan *)0;
 | 
						|
 | 
						|
     p = (const problem_rdft *) p_;
 | 
						|
 | 
						|
     n = p->sz->dims[0].n + 1;
 | 
						|
     buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
 | 
						|
 | 
						|
     cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n, 1, 1),
 | 
						|
                                                   X(mktensor_0d)(),
 | 
						|
                                                   buf, buf, R2HC));
 | 
						|
     X(ifree)(buf);
 | 
						|
     if (!cld)
 | 
						|
          return (plan *)0;
 | 
						|
 | 
						|
     pln = MKPLAN_RDFT(P, &padt, apply);
 | 
						|
 | 
						|
     pln->n = n;
 | 
						|
     pln->is = p->sz->dims[0].is;
 | 
						|
     pln->os = p->sz->dims[0].os;
 | 
						|
     pln->cld = cld;
 | 
						|
     pln->td = 0;
 | 
						|
     
 | 
						|
     X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
 | 
						|
     
 | 
						|
     X(ops_zero)(&ops);
 | 
						|
     ops.other = 4 + (n-1)/2 * 5 + (n-2)/2 * 5;
 | 
						|
     ops.add = (n-1)/2 * 4 + (n-2)/2 * 1;
 | 
						|
     ops.mul = 1 + (n-1)/2 * 2;
 | 
						|
     if (n % 2 == 0)
 | 
						|
	  ops.mul += 1;
 | 
						|
 | 
						|
     X(ops_zero)(&pln->super.super.ops);
 | 
						|
     X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
 | 
						|
     X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
 | 
						|
 | 
						|
     return &(pln->super.super);
 | 
						|
}
 | 
						|
 | 
						|
/* constructor */
 | 
						|
static solver *mksolver(void)
 | 
						|
{
 | 
						|
     static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
 | 
						|
     S *slv = MKSOLVER(S, &sadt);
 | 
						|
     return &(slv->super);
 | 
						|
}
 | 
						|
 | 
						|
void X(rodft00e_r2hc_register)(planner *p)
 | 
						|
{
 | 
						|
     REGISTER_SOLVER(p, mksolver());
 | 
						|
}
 |