237 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
			
		
		
	
	
			237 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
| (*
 | |
|  * Copyright (c) 1997-1999 Massachusetts Institute of Technology
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  *)
 | |
| 
 | |
| (* This file contains the instruction scheduler, which finds an
 | |
|    efficient ordering for a given list of instructions.
 | |
| 
 | |
|    The scheduler analyzes the DAG (directed acyclic graph) formed by
 | |
|    the instruction dependencies, and recursively partitions it.  The
 | |
|    resulting schedule data structure expresses a "good" ordering
 | |
|    and structure for the computation.
 | |
| 
 | |
|    The scheduler makes use of utilties in Dag and other packages to
 | |
|    manipulate the Dag and the instruction list. *)
 | |
| 
 | |
| open Dag
 | |
| (*************************************************
 | |
|  *               Dag scheduler
 | |
|  *************************************************)
 | |
| let to_assignment node = (Expr.Assign (node.assigned, node.expression))
 | |
| let makedag l = Dag.makedag 
 | |
|     (List.map (function Expr.Assign (v, x) -> (v, x)) l)
 | |
| 
 | |
| let return x = x
 | |
| let has_color c n = (n.color = c)
 | |
| let set_color c n = (n.color <- c)
 | |
| let has_either_color c1 c2 n = (n.color = c1 || n.color = c2)
 | |
| 
 | |
| let infinity = 100000 
 | |
| 
 | |
| let cc dag inputs =
 | |
|   begin
 | |
|     Dag.for_all dag (fun node -> 
 | |
|       node.label <- infinity);
 | |
|     
 | |
|     (match inputs with 
 | |
|       a :: _ -> bfs dag a 0
 | |
|     | _ -> failwith "connected");
 | |
| 
 | |
|     return
 | |
|       ((List.map to_assignment (List.filter (fun n -> n.label < infinity)
 | |
| 				  (Dag.to_list dag))),
 | |
|        (List.map to_assignment (List.filter (fun n -> n.label == infinity) 
 | |
| 				  (Dag.to_list dag))))
 | |
|   end
 | |
| 
 | |
| let rec connected_components alist =
 | |
|   let dag = makedag alist in
 | |
|   let inputs = 
 | |
|     List.filter (fun node -> Util.null node.predecessors) 
 | |
|       (Dag.to_list dag) in
 | |
|   match cc dag inputs with
 | |
|     (a, []) -> [a]
 | |
|   | (a, b) -> a :: connected_components b
 | |
| 
 | |
| let single_load node =
 | |
|   match (node.input_variables, node.predecessors) with
 | |
|     ([x], []) -> 
 | |
|       Variable.is_constant x ||
 | |
|       (!Magic.locations_are_special && Variable.is_locative x)
 | |
|   | _ -> false
 | |
| 
 | |
| let loads_locative node =
 | |
|   match (node.input_variables, node.predecessors) with
 | |
|     | ([x], []) -> Variable.is_locative x
 | |
|     | _ -> false
 | |
| 
 | |
| let partition alist =
 | |
|   let dag = makedag alist in
 | |
|   let dag' = Dag.to_list dag in
 | |
|   let inputs = 
 | |
|     List.filter (fun node -> Util.null node.predecessors) dag'
 | |
|   and outputs = 
 | |
|     List.filter (fun node -> Util.null node.successors) dag'
 | |
|   and special_inputs =  List.filter single_load dag' in
 | |
|   begin
 | |
|     
 | |
|     let c = match !Magic.schedule_type with
 | |
| 	| 1 -> RED; (* all nodes in the input partition *)
 | |
| 	| -1 -> BLUE; (* all nodes in the output partition *)
 | |
| 	| _ -> BLACK; (* node color determined by bisection algorithm *)
 | |
|     in Dag.for_all dag (fun node -> node.color <- c);
 | |
| 
 | |
|     Util.for_list inputs (set_color RED);
 | |
| 
 | |
|     (*
 | |
|        The special inputs are those input nodes that load a single
 | |
|        location or twiddle factor.  Special inputs can end up either
 | |
|        in the blue or in the red part.  These inputs are special
 | |
|        because they inherit a color from their neighbors: If a red
 | |
|        node needs a special input, the special input becomes red, but
 | |
|        if all successors of a special input are blue, the special
 | |
|        input becomes blue.  Outputs are always blue, whether they be
 | |
|        special or not.
 | |
| 
 | |
|        Because of the processing of special inputs, however, the final
 | |
|        partition might end up being composed only of blue nodes (which
 | |
|        is incorrect).  In this case we manually reset all inputs
 | |
|        (whether special or not) to be red.
 | |
|     *)
 | |
| 
 | |
|     Util.for_list special_inputs (set_color YELLOW);
 | |
| 
 | |
|     Util.for_list outputs (set_color BLUE);
 | |
| 
 | |
|     let rec loopi donep = 
 | |
|       match (List.filter
 | |
| 	       (fun node -> (has_color BLACK node) &&
 | |
| 		 List.for_all (has_either_color RED YELLOW) node.predecessors)
 | |
| 	       dag') with
 | |
| 	[] -> if (donep) then () else loopo true
 | |
|       |	i -> 
 | |
| 	  begin
 | |
| 	    Util.for_list i (fun node -> 
 | |
| 	      begin
 | |
|       		set_color RED node;
 | |
| 		Util.for_list node.predecessors (set_color RED);
 | |
| 	      end);
 | |
| 	    loopo false; 
 | |
| 	  end
 | |
| 
 | |
|     and loopo donep =
 | |
|       match (List.filter
 | |
| 	       (fun node -> (has_either_color BLACK YELLOW node) &&
 | |
| 		 List.for_all (has_color BLUE) node.successors)
 | |
| 	       dag') with
 | |
| 	[] -> if (donep) then () else loopi true
 | |
|       |	o ->
 | |
| 	  begin
 | |
| 	    Util.for_list o (set_color BLUE);
 | |
| 	    loopi false; 
 | |
| 	  end
 | |
| 
 | |
|     in loopi false;
 | |
| 
 | |
|     (* fix the partition if it is incorrect *)
 | |
|     if not (List.exists (has_color RED) dag') then 
 | |
| 	Util.for_list inputs (set_color RED);
 | |
|     
 | |
|     return
 | |
|       ((List.map to_assignment (List.filter (has_color RED) dag')),
 | |
|        (List.map to_assignment (List.filter (has_color BLUE) dag')))
 | |
|   end
 | |
| 
 | |
| type schedule = 
 | |
|     Done
 | |
|   | Instr of Expr.assignment
 | |
|   | Seq of (schedule * schedule)
 | |
|   | Par of schedule list
 | |
| 
 | |
| 
 | |
| 
 | |
| (* produce a sequential schedule determined by the user *)
 | |
| let rec sequentially = function
 | |
|     [] -> Done
 | |
|   | a :: b -> Seq (Instr a, sequentially b)
 | |
| 
 | |
| let schedule =
 | |
|   let rec schedule_alist = function
 | |
|     | [] -> Done
 | |
|     | [a] -> Instr a
 | |
|     | alist -> match connected_components alist with
 | |
| 	| ([a]) -> schedule_connected a
 | |
| 	| l -> Par (List.map schedule_alist l)
 | |
| 
 | |
|   and schedule_connected alist = 
 | |
|     match partition alist with
 | |
|     | (a, b) -> Seq (schedule_alist a, schedule_alist b)
 | |
| 
 | |
|   in fun x ->
 | |
|     let () = Util.info "begin schedule" in
 | |
|     let res = schedule_alist x in
 | |
|     let () = Util.info "end schedule" in
 | |
|     res
 | |
| 
 | |
| 
 | |
| (* partition a dag into two parts:
 | |
| 
 | |
|    1) the set of loads from locatives and their successors,
 | |
|    2) all other nodes
 | |
| 
 | |
|    This step separates the ``body'' of the dag, which computes the
 | |
|    actual fft, from the ``precomputations'' part, which computes e.g.
 | |
|    twiddle factors.
 | |
| *)
 | |
| let partition_precomputations alist =
 | |
|   let dag = makedag alist in
 | |
|   let dag' = Dag.to_list dag in
 | |
|   let loads =  List.filter loads_locative dag' in
 | |
|     begin
 | |
|       
 | |
|       Dag.for_all dag (set_color BLUE);
 | |
|       Util.for_list loads (set_color RED);
 | |
| 
 | |
|       let rec loop () = 
 | |
| 	match (List.filter
 | |
| 		 (fun node -> (has_color RED node) &&
 | |
| 		    List.exists (has_color BLUE) node.successors)
 | |
| 		 dag') with
 | |
| 	    [] -> ()
 | |
| 	  |	i -> 
 | |
| 		  begin
 | |
| 		    Util.for_list i 
 | |
| 		      (fun node -> 
 | |
| 			 Util.for_list node.successors (set_color RED));
 | |
| 		    loop ()
 | |
| 		  end
 | |
| 
 | |
|       in loop ();
 | |
| 
 | |
| 	return
 | |
| 	  ((List.map to_assignment (List.filter (has_color BLUE) dag')),
 | |
| 	   (List.map to_assignment (List.filter (has_color RED) dag')))
 | |
|     end
 | |
| 
 | |
| let isolate_precomputations_and_schedule alist =
 | |
|   let (a, b) = partition_precomputations alist in
 | |
|     Seq (schedule a, schedule b)
 | |
|   
 | 
