148 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
			
		
		
	
	
			148 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
| (*
 | |
|  * Copyright (c) 1997-1999 Massachusetts Institute of Technology
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  *)
 | |
| 
 | |
| (* abstraction layer for complex operations *)
 | |
| open Littlesimp
 | |
| open Expr
 | |
| 
 | |
| (* type of complex expressions *)
 | |
| type expr = CE of Expr.expr * Expr.expr
 | |
| 
 | |
| let two = CE (makeNum Number.two, makeNum Number.zero)
 | |
| let one = CE (makeNum Number.one, makeNum Number.zero)
 | |
| let i = CE (makeNum Number.zero, makeNum Number.one)
 | |
| let zero = CE (makeNum Number.zero, makeNum Number.zero)
 | |
| let make (r, i) = CE (r, i)
 | |
| 
 | |
| let uminus (CE (a, b)) =  CE (makeUminus a, makeUminus b)
 | |
| 
 | |
| let inverse_int n = CE (makeNum (Number.div Number.one (Number.of_int n)),
 | |
| 			makeNum Number.zero)
 | |
| 
 | |
| let inverse_int_sqrt n = 
 | |
|   CE (makeNum (Number.div Number.one (Number.sqrt (Number.of_int n))),
 | |
|       makeNum Number.zero)
 | |
| let int_sqrt n = 
 | |
|   CE (makeNum (Number.sqrt (Number.of_int n)),
 | |
|       makeNum Number.zero)
 | |
| 
 | |
| let nan x = CE (NaN x, makeNum Number.zero)
 | |
| 
 | |
| let half = inverse_int 2
 | |
| 
 | |
| let times3x3 (CE (a, b)) (CE (c, d)) = 
 | |
|   CE (makePlus [makeTimes (c, makePlus [a; makeUminus (b)]);
 | |
| 	        makeTimes (b, makePlus [c; makeUminus (d)])],
 | |
|       makePlus [makeTimes (a, makePlus [c; d]);
 | |
| 	        makeUminus(makeTimes (c, makePlus [a; makeUminus (b)]))])
 | |
| 
 | |
| let times (CE (a, b)) (CE (c, d)) = 
 | |
|   if not !Magic.threemult then
 | |
|     CE (makePlus [makeTimes (a, c); makeUminus (makeTimes (b, d))],
 | |
|         makePlus [makeTimes (a, d); makeTimes (b, c)])
 | |
|   else if is_constant c && is_constant d then
 | |
|     times3x3 (CE (a, b)) (CE (c, d))
 | |
|   else (* hope a and b are constant expressions *)
 | |
|     times3x3 (CE (c, d)) (CE (a, b))
 | |
| 
 | |
| let ctimes (CE (a, _)) (CE (c, _)) = 
 | |
|   CE (CTimes (a, c), makeNum Number.zero)
 | |
| 
 | |
| let ctimesj (CE (a, _)) (CE (c, _)) = 
 | |
|   CE (CTimesJ (a, c), makeNum Number.zero)
 | |
|       
 | |
| (* complex exponential (of root of unity); returns exp(2*pi*i/n * m) *)
 | |
| let exp n i =
 | |
|   let (c, s) = Number.cexp n i
 | |
|   in CE (makeNum c, makeNum s)
 | |
| 
 | |
| (* various trig functions evaluated at (2*pi*i/n * m) *)
 | |
| let sec n m =
 | |
|   let (c, s) = Number.cexp n m
 | |
|   in CE (makeNum (Number.div Number.one c), makeNum Number.zero)
 | |
| let csc n m =
 | |
|   let (c, s) = Number.cexp n m
 | |
|   in CE (makeNum (Number.div Number.one s), makeNum Number.zero)
 | |
| let tan n m =
 | |
|   let (c, s) = Number.cexp n m
 | |
|   in CE (makeNum (Number.div s c), makeNum Number.zero)
 | |
| let cot n m =
 | |
|   let (c, s) = Number.cexp n m
 | |
|   in CE (makeNum (Number.div c s), makeNum Number.zero)
 | |
|     
 | |
| (* complex sum *)
 | |
| let plus a =
 | |
|   let rec unzip_complex = function
 | |
|       [] -> ([], [])
 | |
|     | ((CE (a, b)) :: s) ->
 | |
|         let (r,i) = unzip_complex s
 | |
| 	in
 | |
| 	(a::r), (b::i) in
 | |
|   let (c, d) = unzip_complex a in
 | |
|   CE (makePlus c, makePlus d)
 | |
| 
 | |
| (* extract real/imaginary *)
 | |
| let real (CE (a, b)) = CE (a, makeNum Number.zero)
 | |
| let imag (CE (a, b)) = CE (b, makeNum Number.zero)
 | |
| let iimag (CE (a, b)) = CE (makeNum Number.zero, b)
 | |
| let conj (CE (a, b)) = CE (a, makeUminus b)
 | |
| 
 | |
|     
 | |
| (* abstraction of sum_{i=0}^{n-1} *)
 | |
| let sigma a b f = plus (List.map f (Util.interval a b))
 | |
| 
 | |
| (* store and assignment operations *)
 | |
| let store_real v (CE (a, b)) = Expr.Store (v, a)
 | |
| let store_imag v (CE (a, b)) = Expr.Store (v, b)
 | |
| let store (vr, vi) x = (store_real vr x, store_imag vi x)
 | |
| 
 | |
| let assign_real v (CE (a, b)) = Expr.Assign (v, a)
 | |
| let assign_imag v (CE (a, b)) = Expr.Assign (v, b)
 | |
| let assign (vr, vi) x = (assign_real vr x, assign_imag vi x)
 | |
| 
 | |
| 
 | |
| (************************
 | |
|    shortcuts 
 | |
|  ************************)
 | |
| let (@*) = times
 | |
| let (@+) a b = plus [a; b]
 | |
| let (@-) a b = plus [a; uminus b]
 | |
| 
 | |
| (* type of complex signals *)
 | |
| type signal = int -> expr
 | |
| 
 | |
| (* make a finite signal infinite *)
 | |
| let infinite n signal i = if ((0 <= i) && (i < n)) then signal i else zero
 | |
| 
 | |
| let hermitian n a =
 | |
|   Util.array n (fun i ->
 | |
|     if (i = 0) then real (a 0)
 | |
|     else if (i < n - i)  then (a i)
 | |
|     else if (i > n - i)  then conj (a (n - i))
 | |
|     else real (a i))
 | |
| 
 | |
| let antihermitian n a =
 | |
|   Util.array n (fun i ->
 | |
|     if (i = 0) then iimag (a 0)
 | |
|     else if (i < n - i)  then (a i)
 | |
|     else if (i > n - i)  then uminus (conj (a (n - i)))
 | |
|     else iimag (a i))
 | 
