514 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			514 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| 
 | |
| /* Do an R{E,O}DFT11 problem of *even* size by a pair of R2HC problems
 | |
|    of half the size, plus some pre/post-processing.  Use a trick from:
 | |
| 
 | |
|    Zhongde Wang, "On computing the discrete Fourier and cosine transforms,"
 | |
|    IEEE Trans. Acoust. Speech Sig. Proc. ASSP-33 (4), 1341--1344 (1985).
 | |
| 
 | |
|    to re-express as a pair of half-size REDFT01 (DCT-III) problems.  Our
 | |
|    implementation looks quite a bit different from the algorithm described
 | |
|    in the paper because we combined the paper's pre/post-processing with
 | |
|    the pre/post-processing used to turn REDFT01 into R2HC.  (Also, the
 | |
|    paper uses a DCT/DST pair, but we turn the DST into a DCT via the
 | |
|    usual reordering/sign-flip trick.  We additionally combined a couple
 | |
|    of the matrices/transformations of the paper into a single pass.)
 | |
| 
 | |
|    NOTE: We originally used a simpler method by S. C. Chan and K. L. Ho
 | |
|    that turned out to have numerical problems; see reodft11e-r2hc.c.
 | |
| 
 | |
|    (For odd sizes, see reodft11e-r2hc-odd.c.)
 | |
| */
 | |
| 
 | |
| #include "reodft/reodft.h"
 | |
| 
 | |
| typedef struct {
 | |
|      solver super;
 | |
| } S;
 | |
| 
 | |
| typedef struct {
 | |
|      plan_rdft super;
 | |
|      plan *cld;
 | |
|      twid *td, *td2;
 | |
|      INT is, os;
 | |
|      INT n;
 | |
|      INT vl;
 | |
|      INT ivs, ovs;
 | |
|      rdft_kind kind;
 | |
| } P;
 | |
| 
 | |
| static void apply_re11(const plan *ego_, R *I, R *O)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
|      INT is = ego->is, os = ego->os;
 | |
|      INT i, n = ego->n, n2 = n/2;
 | |
|      INT iv, vl = ego->vl;
 | |
|      INT ivs = ego->ivs, ovs = ego->ovs;
 | |
|      R *W = ego->td->W;
 | |
|      R *W2;
 | |
|      R *buf;
 | |
| 
 | |
|      buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
 | |
| 
 | |
|      for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
 | |
| 	  buf[0] = K(2.0) * I[0];
 | |
| 	  buf[n2] = K(2.0) * I[is * (n - 1)];
 | |
| 	  for (i = 1; i + i < n2; ++i) {
 | |
| 	       INT k = i + i;
 | |
| 	       E a, b, a2, b2;
 | |
| 	       {
 | |
| 		    E u, v;
 | |
| 		    u = I[is * (k - 1)];
 | |
| 		    v = I[is * k];
 | |
| 		    a = u + v;
 | |
| 		    b2 = u - v;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E u, v;
 | |
| 		    u = I[is * (n - k - 1)];
 | |
| 		    v = I[is * (n - k)];
 | |
| 		    b = u + v;
 | |
| 		    a2 = u - v;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E wa, wb;
 | |
| 		    wa = W[2*i];
 | |
| 		    wb = W[2*i + 1];
 | |
| 		    {
 | |
| 			 E apb, amb;
 | |
| 			 apb = a + b;
 | |
| 			 amb = a - b;
 | |
| 			 buf[i] = wa * amb + wb * apb; 
 | |
| 			 buf[n2 - i] = wa * apb - wb * amb; 
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E apb, amb;
 | |
| 			 apb = a2 + b2;
 | |
| 			 amb = a2 - b2;
 | |
| 			 buf[n2 + i] = wa * amb + wb * apb; 
 | |
| 			 buf[n - i] = wa * apb - wb * amb; 
 | |
| 		    }
 | |
| 	       }
 | |
| 	  }
 | |
| 	  if (i + i == n2) {
 | |
| 	       E u, v;
 | |
| 	       u = I[is * (n2 - 1)];
 | |
| 	       v = I[is * n2];
 | |
| 	       buf[i] = (u + v) * (W[2*i] * K(2.0));
 | |
| 	       buf[n - i] = (u - v) * (W[2*i] * K(2.0));
 | |
| 	  }
 | |
| 
 | |
| 
 | |
| 	  /* child plan: two r2hc's of size n/2 */
 | |
| 	  {
 | |
| 	       plan_rdft *cld = (plan_rdft *) ego->cld;
 | |
| 	       cld->apply((plan *) cld, buf, buf);
 | |
| 	  }
 | |
| 	  
 | |
| 	  W2 = ego->td2->W;
 | |
| 	  { /* i == 0 case */
 | |
| 	       E wa, wb;
 | |
| 	       E a, b;
 | |
| 	       wa = W2[0]; /* cos */
 | |
| 	       wb = W2[1]; /* sin */
 | |
| 	       a = buf[0];
 | |
| 	       b = buf[n2];
 | |
| 	       O[0] = wa * a + wb * b;
 | |
| 	       O[os * (n - 1)] = wb * a - wa * b;
 | |
| 	  }
 | |
| 	  W2 += 2;
 | |
| 	  for (i = 1; i + i < n2; ++i, W2 += 2) {
 | |
| 	       INT k;
 | |
| 	       E u, v, u2, v2;
 | |
| 	       u = buf[i];
 | |
| 	       v = buf[n2 - i];
 | |
| 	       u2 = buf[n2 + i];
 | |
| 	       v2 = buf[n - i];
 | |
| 	       k = (i + i) - 1;
 | |
| 	       {
 | |
|                     E wa, wb;
 | |
|                     E a, b;
 | |
|                     wa = W2[0]; /* cos */
 | |
|                     wb = W2[1]; /* sin */
 | |
|                     a = u - v;
 | |
|                     b = v2 - u2;
 | |
|                     O[os * k] = wa * a + wb * b;
 | |
|                     O[os * (n - 1 - k)] = wb * a - wa * b;
 | |
|                }
 | |
| 	       ++k;
 | |
| 	       W2 += 2;
 | |
| 	       {
 | |
| 		    E wa, wb;
 | |
| 		    E a, b;
 | |
| 		    wa = W2[0]; /* cos */
 | |
| 		    wb = W2[1]; /* sin */
 | |
| 		    a = u + v;
 | |
| 		    b = u2 + v2;
 | |
| 		    O[os * k] = wa * a + wb * b;
 | |
| 		    O[os * (n - 1 - k)] = wb * a - wa * b;
 | |
| 	       }
 | |
| 	  }
 | |
| 	  if (i + i == n2) {
 | |
| 	       INT k = (i + i) - 1;
 | |
| 	       E wa, wb;
 | |
| 	       E a, b;
 | |
| 	       wa = W2[0]; /* cos */
 | |
| 	       wb = W2[1]; /* sin */
 | |
| 	       a = buf[i];
 | |
| 	       b = buf[n2 + i];
 | |
| 	       O[os * k] = wa * a - wb * b;
 | |
| 	       O[os * (n - 1 - k)] = wb * a + wa * b;
 | |
| 	  }
 | |
|      }
 | |
| 
 | |
|      X(ifree)(buf);
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| 
 | |
| /* This version of apply_re11 uses REDFT01 child plans, more similar
 | |
|    to the original paper by Z. Wang.  We keep it around for reference
 | |
|    (it is simpler) and because it may become more efficient if we
 | |
|    ever implement REDFT01 codelets. */
 | |
| 
 | |
| static void apply_re11(const plan *ego_, R *I, R *O)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
|      INT is = ego->is, os = ego->os;
 | |
|      INT i, n = ego->n;
 | |
|      INT iv, vl = ego->vl;
 | |
|      INT ivs = ego->ivs, ovs = ego->ovs;
 | |
|      R *W;
 | |
|      R *buf;
 | |
| 
 | |
|      buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
 | |
| 
 | |
|      for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
 | |
| 	  buf[0] = K(2.0) * I[0];
 | |
| 	  buf[n/2] = K(2.0) * I[is * (n - 1)];
 | |
| 	  for (i = 1; i + i < n; ++i) {
 | |
| 	       INT k = i + i;
 | |
| 	       E a, b;
 | |
| 	       a = I[is * (k - 1)];
 | |
| 	       b = I[is * k];
 | |
| 	       buf[i] = a + b;
 | |
| 	       buf[n - i] = a - b;
 | |
| 	  }
 | |
| 
 | |
| 	  /* child plan: two redft01's (DCT-III) */
 | |
| 	  {
 | |
| 	       plan_rdft *cld = (plan_rdft *) ego->cld;
 | |
| 	       cld->apply((plan *) cld, buf, buf);
 | |
| 	  }
 | |
| 	  
 | |
| 	  W = ego->td2->W;
 | |
| 	  for (i = 0; i + 1 < n/2; ++i, W += 2) {
 | |
| 	       {
 | |
| 		    E wa, wb;
 | |
| 		    E a, b;
 | |
| 		    wa = W[0]; /* cos */
 | |
| 		    wb = W[1]; /* sin */
 | |
| 		    a = buf[i];
 | |
| 		    b = buf[n/2 + i];
 | |
| 		    O[os * i] = wa * a + wb * b;
 | |
| 		    O[os * (n - 1 - i)] = wb * a - wa * b;
 | |
| 	       }
 | |
| 	       ++i;
 | |
| 	       W += 2;
 | |
| 	       {
 | |
|                     E wa, wb;
 | |
|                     E a, b;
 | |
|                     wa = W[0]; /* cos */
 | |
|                     wb = W[1]; /* sin */
 | |
|                     a = buf[i];
 | |
|                     b = buf[n/2 + i];
 | |
|                     O[os * i] = wa * a - wb * b;
 | |
|                     O[os * (n - 1 - i)] = wb * a + wa * b;
 | |
|                }
 | |
| 	  }
 | |
| 	  if (i < n/2) {
 | |
| 	       E wa, wb;
 | |
| 	       E a, b;
 | |
| 	       wa = W[0]; /* cos */
 | |
| 	       wb = W[1]; /* sin */
 | |
| 	       a = buf[i];
 | |
| 	       b = buf[n/2 + i];
 | |
| 	       O[os * i] = wa * a + wb * b;
 | |
| 	       O[os * (n - 1 - i)] = wb * a - wa * b;
 | |
| 	  }
 | |
|      }
 | |
| 
 | |
|      X(ifree)(buf);
 | |
| }
 | |
| 
 | |
| #endif /* 0 */
 | |
| 
 | |
| /* like for rodft01, rodft11 is obtained from redft11 by
 | |
|    reversing the input and flipping the sign of every other output. */
 | |
| static void apply_ro11(const plan *ego_, R *I, R *O)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
|      INT is = ego->is, os = ego->os;
 | |
|      INT i, n = ego->n, n2 = n/2;
 | |
|      INT iv, vl = ego->vl;
 | |
|      INT ivs = ego->ivs, ovs = ego->ovs;
 | |
|      R *W = ego->td->W;
 | |
|      R *W2;
 | |
|      R *buf;
 | |
| 
 | |
|      buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
 | |
| 
 | |
|      for (iv = 0; iv < vl; ++iv, I += ivs, O += ovs) {
 | |
| 	  buf[0] = K(2.0) * I[is * (n - 1)];
 | |
| 	  buf[n2] = K(2.0) * I[0];
 | |
| 	  for (i = 1; i + i < n2; ++i) {
 | |
| 	       INT k = i + i;
 | |
| 	       E a, b, a2, b2;
 | |
| 	       {
 | |
| 		    E u, v;
 | |
| 		    u = I[is * (n - k)];
 | |
| 		    v = I[is * (n - 1 - k)];
 | |
| 		    a = u + v;
 | |
| 		    b2 = u - v;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E u, v;
 | |
| 		    u = I[is * (k)];
 | |
| 		    v = I[is * (k - 1)];
 | |
| 		    b = u + v;
 | |
| 		    a2 = u - v;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E wa, wb;
 | |
| 		    wa = W[2*i];
 | |
| 		    wb = W[2*i + 1];
 | |
| 		    {
 | |
| 			 E apb, amb;
 | |
| 			 apb = a + b;
 | |
| 			 amb = a - b;
 | |
| 			 buf[i] = wa * amb + wb * apb; 
 | |
| 			 buf[n2 - i] = wa * apb - wb * amb; 
 | |
| 		    }
 | |
| 		    {
 | |
| 			 E apb, amb;
 | |
| 			 apb = a2 + b2;
 | |
| 			 amb = a2 - b2;
 | |
| 			 buf[n2 + i] = wa * amb + wb * apb; 
 | |
| 			 buf[n - i] = wa * apb - wb * amb; 
 | |
| 		    }
 | |
| 	       }
 | |
| 	  }
 | |
| 	  if (i + i == n2) {
 | |
| 	       E u, v;
 | |
| 	       u = I[is * n2];
 | |
| 	       v = I[is * (n2 - 1)];
 | |
| 	       buf[i] = (u + v) * (W[2*i] * K(2.0));
 | |
| 	       buf[n - i] = (u - v) * (W[2*i] * K(2.0));
 | |
| 	  }
 | |
| 
 | |
| 
 | |
| 	  /* child plan: two r2hc's of size n/2 */
 | |
| 	  {
 | |
| 	       plan_rdft *cld = (plan_rdft *) ego->cld;
 | |
| 	       cld->apply((plan *) cld, buf, buf);
 | |
| 	  }
 | |
| 	  
 | |
| 	  W2 = ego->td2->W;
 | |
| 	  { /* i == 0 case */
 | |
| 	       E wa, wb;
 | |
| 	       E a, b;
 | |
| 	       wa = W2[0]; /* cos */
 | |
| 	       wb = W2[1]; /* sin */
 | |
| 	       a = buf[0];
 | |
| 	       b = buf[n2];
 | |
| 	       O[0] = wa * a + wb * b;
 | |
| 	       O[os * (n - 1)] = wa * b - wb * a;
 | |
| 	  }
 | |
| 	  W2 += 2;
 | |
| 	  for (i = 1; i + i < n2; ++i, W2 += 2) {
 | |
| 	       INT k;
 | |
| 	       E u, v, u2, v2;
 | |
| 	       u = buf[i];
 | |
| 	       v = buf[n2 - i];
 | |
| 	       u2 = buf[n2 + i];
 | |
| 	       v2 = buf[n - i];
 | |
| 	       k = (i + i) - 1;
 | |
| 	       {
 | |
|                     E wa, wb;
 | |
|                     E a, b;
 | |
|                     wa = W2[0]; /* cos */
 | |
|                     wb = W2[1]; /* sin */
 | |
|                     a = v - u;
 | |
|                     b = u2 - v2;
 | |
|                     O[os * k] = wa * a + wb * b;
 | |
|                     O[os * (n - 1 - k)] = wa * b - wb * a;
 | |
|                }
 | |
| 	       ++k;
 | |
| 	       W2 += 2;
 | |
| 	       {
 | |
| 		    E wa, wb;
 | |
| 		    E a, b;
 | |
| 		    wa = W2[0]; /* cos */
 | |
| 		    wb = W2[1]; /* sin */
 | |
| 		    a = u + v;
 | |
| 		    b = u2 + v2;
 | |
| 		    O[os * k] = wa * a + wb * b;
 | |
| 		    O[os * (n - 1 - k)] = wa * b - wb * a;
 | |
| 	       }
 | |
| 	  }
 | |
| 	  if (i + i == n2) {
 | |
| 	       INT k = (i + i) - 1;
 | |
| 	       E wa, wb;
 | |
| 	       E a, b;
 | |
| 	       wa = W2[0]; /* cos */
 | |
| 	       wb = W2[1]; /* sin */
 | |
| 	       a = buf[i];
 | |
| 	       b = buf[n2 + i];
 | |
| 	       O[os * k] = wb * b - wa * a;
 | |
| 	       O[os * (n - 1 - k)] = wa * b + wb * a;
 | |
| 	  }
 | |
|      }
 | |
| 
 | |
|      X(ifree)(buf);
 | |
| }
 | |
| 
 | |
| static void awake(plan *ego_, enum wakefulness wakefulness)
 | |
| {
 | |
|      P *ego = (P *) ego_;
 | |
|      static const tw_instr reodft010e_tw[] = {
 | |
|           { TW_COS, 0, 1 },
 | |
|           { TW_SIN, 0, 1 },
 | |
|           { TW_NEXT, 1, 0 }
 | |
|      };
 | |
|      static const tw_instr reodft11e_tw[] = {
 | |
|           { TW_COS, 1, 1 },
 | |
|           { TW_SIN, 1, 1 },
 | |
|           { TW_NEXT, 2, 0 }
 | |
|      };
 | |
| 
 | |
|      X(plan_awake)(ego->cld, wakefulness);
 | |
| 
 | |
|      X(twiddle_awake)(wakefulness, &ego->td, reodft010e_tw, 
 | |
| 		      2*ego->n, 1, ego->n/4+1);
 | |
|      X(twiddle_awake)(wakefulness, &ego->td2, reodft11e_tw, 
 | |
| 		      8*ego->n, 1, ego->n);
 | |
| }
 | |
| 
 | |
| static void destroy(plan *ego_)
 | |
| {
 | |
|      P *ego = (P *) ego_;
 | |
|      X(plan_destroy_internal)(ego->cld);
 | |
| }
 | |
| 
 | |
| static void print(const plan *ego_, printer *p)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
|      p->print(p, "(%se-radix2-r2hc-%D%v%(%p%))",
 | |
| 	      X(rdft_kind_str)(ego->kind), ego->n, ego->vl, ego->cld);
 | |
| }
 | |
| 
 | |
| static int applicable0(const solver *ego_, const problem *p_)
 | |
| {
 | |
|      const problem_rdft *p = (const problem_rdft *) p_;
 | |
|      UNUSED(ego_);
 | |
| 
 | |
|      return (1
 | |
| 	     && p->sz->rnk == 1
 | |
| 	     && p->vecsz->rnk <= 1
 | |
| 	     && p->sz->dims[0].n % 2 == 0
 | |
| 	     && (p->kind[0] == REDFT11 || p->kind[0] == RODFT11)
 | |
| 	  );
 | |
| }
 | |
| 
 | |
| static int applicable(const solver *ego, const problem *p, const planner *plnr)
 | |
| {
 | |
|      return (!NO_SLOWP(plnr) && applicable0(ego, p));
 | |
| }
 | |
| 
 | |
| static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
 | |
| {
 | |
|      P *pln;
 | |
|      const problem_rdft *p;
 | |
|      plan *cld;
 | |
|      R *buf;
 | |
|      INT n;
 | |
|      opcnt ops;
 | |
| 
 | |
|      static const plan_adt padt = {
 | |
| 	  X(rdft_solve), awake, print, destroy
 | |
|      };
 | |
| 
 | |
|      if (!applicable(ego_, p_, plnr))
 | |
|           return (plan *)0;
 | |
| 
 | |
|      p = (const problem_rdft *) p_;
 | |
| 
 | |
|      n = p->sz->dims[0].n;
 | |
|      buf = (R *) MALLOC(sizeof(R) * n, BUFFERS);
 | |
| 
 | |
|      cld = X(mkplan_d)(plnr, X(mkproblem_rdft_1_d)(X(mktensor_1d)(n/2, 1, 1),
 | |
|                                                    X(mktensor_1d)(2, n/2, n/2),
 | |
|                                                    buf, buf, R2HC));
 | |
|      X(ifree)(buf);
 | |
|      if (!cld)
 | |
|           return (plan *)0;
 | |
| 
 | |
|      pln = MKPLAN_RDFT(P, &padt, p->kind[0]==REDFT11 ? apply_re11:apply_ro11);
 | |
|      pln->n = n;
 | |
|      pln->is = p->sz->dims[0].is;
 | |
|      pln->os = p->sz->dims[0].os;
 | |
|      pln->cld = cld;
 | |
|      pln->td = pln->td2 = 0;
 | |
|      pln->kind = p->kind[0];
 | |
|      
 | |
|      X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
 | |
|      
 | |
|      X(ops_zero)(&ops);
 | |
|      ops.add = 2 + (n/2 - 1)/2 * 20;
 | |
|      ops.mul = 6 + (n/2 - 1)/2 * 16;
 | |
|      ops.other = 4*n + 2 + (n/2 - 1)/2 * 6;
 | |
|      if ((n/2) % 2 == 0) {
 | |
| 	  ops.add += 4;
 | |
| 	  ops.mul += 8;
 | |
| 	  ops.other += 4;
 | |
|      }
 | |
| 
 | |
|      X(ops_zero)(&pln->super.super.ops);
 | |
|      X(ops_madd2)(pln->vl, &ops, &pln->super.super.ops);
 | |
|      X(ops_madd2)(pln->vl, &cld->ops, &pln->super.super.ops);
 | |
| 
 | |
|      return &(pln->super.super);
 | |
| }
 | |
| 
 | |
| /* constructor */
 | |
| static solver *mksolver(void)
 | |
| {
 | |
|      static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
 | |
|      S *slv = MKSOLVER(S, &sadt);
 | |
|      return &(slv->super);
 | |
| }
 | |
| 
 | |
| void X(reodft11e_radix2_r2hc_register)(planner *p)
 | |
| {
 | |
|      REGISTER_SOLVER(p, mksolver());
 | |
| }
 | 
