294 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			294 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* This file was automatically generated --- DO NOT EDIT */
 | |
| /* Generated on Tue Sep 14 10:46:48 EDT 2021 */
 | |
| 
 | |
| #include "rdft/codelet-rdft.h"
 | |
| 
 | |
| #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cb_15 -include rdft/scalar/r2cb.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 64 FP additions, 43 FP multiplications,
 | |
|  * (or, 21 additions, 0 multiplications, 43 fused multiply/add),
 | |
|  * 46 stack variables, 9 constants, and 30 memory accesses
 | |
|  */
 | |
| #include "rdft/scalar/r2cb.h"
 | |
| 
 | |
| static void r2cb_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
 | |
| {
 | |
|      DK(KP559016994, +0.559016994374947424102293417182819058860154590);
 | |
|      DK(KP866025403, +0.866025403784438646763723170752936183471402627);
 | |
|      DK(KP250000000, +0.250000000000000000000000000000000000000000000);
 | |
|      DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
 | |
|      DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
 | |
|      DK(KP618033988, +0.618033988749894848204586834365638117720309180);
 | |
|      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
 | |
|      DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
 | |
|      DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
 | |
|      {
 | |
| 	  INT i;
 | |
| 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) {
 | |
| 	       E T3, Tt, Th, TC, TY, TZ, TD, TH, TI, Tm, Tu, Tr, Tv, T8, Td;
 | |
| 	       E Te;
 | |
| 	       {
 | |
| 		    E Tg, T1, T2, Tf;
 | |
| 		    Tg = Ci[WS(csi, 5)];
 | |
| 		    T1 = Cr[0];
 | |
| 		    T2 = Cr[WS(csr, 5)];
 | |
| 		    Tf = T1 - T2;
 | |
| 		    T3 = FMA(KP2_000000000, T2, T1);
 | |
| 		    Tt = FNMS(KP1_732050807, Tg, Tf);
 | |
| 		    Th = FMA(KP1_732050807, Tg, Tf);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T4, TA, T9, TF, T5, T6, T7, Ta, Tb, Tc, Tq, TG, Tl, TB, Ti;
 | |
| 		    E Tn;
 | |
| 		    T4 = Cr[WS(csr, 3)];
 | |
| 		    TA = Ci[WS(csi, 3)];
 | |
| 		    T9 = Cr[WS(csr, 6)];
 | |
| 		    TF = Ci[WS(csi, 6)];
 | |
| 		    T5 = Cr[WS(csr, 7)];
 | |
| 		    T6 = Cr[WS(csr, 2)];
 | |
| 		    T7 = T5 + T6;
 | |
| 		    Ta = Cr[WS(csr, 4)];
 | |
| 		    Tb = Cr[WS(csr, 1)];
 | |
| 		    Tc = Ta + Tb;
 | |
| 		    {
 | |
| 			 E To, Tp, Tj, Tk;
 | |
| 			 To = Ci[WS(csi, 4)];
 | |
| 			 Tp = Ci[WS(csi, 1)];
 | |
| 			 Tq = To + Tp;
 | |
| 			 TG = Tp - To;
 | |
| 			 Tj = Ci[WS(csi, 7)];
 | |
| 			 Tk = Ci[WS(csi, 2)];
 | |
| 			 Tl = Tj - Tk;
 | |
| 			 TB = Tj + Tk;
 | |
| 		    }
 | |
| 		    TC = FMA(KP500000000, TB, TA);
 | |
| 		    TY = TG + TF;
 | |
| 		    TZ = TA - TB;
 | |
| 		    TD = T5 - T6;
 | |
| 		    TH = FNMS(KP500000000, TG, TF);
 | |
| 		    TI = Ta - Tb;
 | |
| 		    Ti = FNMS(KP2_000000000, T4, T7);
 | |
| 		    Tm = FMA(KP1_732050807, Tl, Ti);
 | |
| 		    Tu = FNMS(KP1_732050807, Tl, Ti);
 | |
| 		    Tn = FNMS(KP2_000000000, T9, Tc);
 | |
| 		    Tr = FMA(KP1_732050807, Tq, Tn);
 | |
| 		    Tv = FNMS(KP1_732050807, Tq, Tn);
 | |
| 		    T8 = T4 + T7;
 | |
| 		    Td = T9 + Tc;
 | |
| 		    Te = T8 + Td;
 | |
| 	       }
 | |
| 	       R0[0] = FMA(KP2_000000000, Te, T3);
 | |
| 	       {
 | |
| 		    E T10, T12, TX, T11, TV, TW;
 | |
| 		    T10 = FNMS(KP618033988, TZ, TY);
 | |
| 		    T12 = FMA(KP618033988, TY, TZ);
 | |
| 		    TV = FNMS(KP500000000, Te, T3);
 | |
| 		    TW = T8 - Td;
 | |
| 		    TX = FNMS(KP1_118033988, TW, TV);
 | |
| 		    T11 = FMA(KP1_118033988, TW, TV);
 | |
| 		    R1[WS(rs, 1)] = FNMS(KP1_902113032, T10, TX);
 | |
| 		    R1[WS(rs, 4)] = FMA(KP1_902113032, T12, T11);
 | |
| 		    R0[WS(rs, 6)] = FMA(KP1_902113032, T10, TX);
 | |
| 		    R0[WS(rs, 3)] = FNMS(KP1_902113032, T12, T11);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TO, Ts, TN, TS, TU, TQ, TR, TT, TP;
 | |
| 		    TO = Tr - Tm;
 | |
| 		    Ts = Tm + Tr;
 | |
| 		    TN = FMA(KP250000000, Ts, Th);
 | |
| 		    TQ = FNMS(KP866025403, TI, TH);
 | |
| 		    TR = FNMS(KP866025403, TD, TC);
 | |
| 		    TS = FNMS(KP618033988, TR, TQ);
 | |
| 		    TU = FMA(KP618033988, TQ, TR);
 | |
| 		    R1[WS(rs, 2)] = Th - Ts;
 | |
| 		    TT = FMA(KP559016994, TO, TN);
 | |
| 		    R1[WS(rs, 5)] = FNMS(KP1_902113032, TU, TT);
 | |
| 		    R0[WS(rs, 7)] = FMA(KP1_902113032, TU, TT);
 | |
| 		    TP = FNMS(KP559016994, TO, TN);
 | |
| 		    R0[WS(rs, 4)] = FNMS(KP1_902113032, TS, TP);
 | |
| 		    R0[WS(rs, 1)] = FMA(KP1_902113032, TS, TP);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Ty, Tw, Tx, TK, TM, TE, TJ, TL, Tz;
 | |
| 		    Ty = Tv - Tu;
 | |
| 		    Tw = Tu + Tv;
 | |
| 		    Tx = FMA(KP250000000, Tw, Tt);
 | |
| 		    TE = FMA(KP866025403, TD, TC);
 | |
| 		    TJ = FMA(KP866025403, TI, TH);
 | |
| 		    TK = FMA(KP618033988, TJ, TE);
 | |
| 		    TM = FNMS(KP618033988, TE, TJ);
 | |
| 		    R0[WS(rs, 5)] = Tt - Tw;
 | |
| 		    TL = FNMS(KP559016994, Ty, Tx);
 | |
| 		    R1[WS(rs, 6)] = FNMS(KP1_902113032, TM, TL);
 | |
| 		    R1[WS(rs, 3)] = FMA(KP1_902113032, TM, TL);
 | |
| 		    Tz = FMA(KP559016994, Ty, Tx);
 | |
| 		    R1[0] = FNMS(KP1_902113032, TK, Tz);
 | |
| 		    R0[WS(rs, 2)] = FMA(KP1_902113032, TK, Tz);
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const kr2c_desc desc = { 15, "r2cb_15", { 21, 0, 43, 0 }, &GENUS };
 | |
| 
 | |
| void X(codelet_r2cb_15) (planner *p) { X(kr2c_register) (p, r2cb_15, &desc);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cb_15 -include rdft/scalar/r2cb.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 64 FP additions, 31 FP multiplications,
 | |
|  * (or, 47 additions, 14 multiplications, 17 fused multiply/add),
 | |
|  * 44 stack variables, 7 constants, and 30 memory accesses
 | |
|  */
 | |
| #include "rdft/scalar/r2cb.h"
 | |
| 
 | |
| static void r2cb_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
 | |
| {
 | |
|      DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
 | |
|      DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
 | |
|      DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
 | |
|      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
 | |
|      DK(KP866025403, +0.866025403784438646763723170752936183471402627);
 | |
|      DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
 | |
|      DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
 | |
|      {
 | |
| 	  INT i;
 | |
| 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) {
 | |
| 	       E T3, Tu, Ti, TB, TZ, T10, TE, TG, TJ, Tn, Tv, Ts, Tw, T8, Td;
 | |
| 	       E Te;
 | |
| 	       {
 | |
| 		    E Th, T1, T2, Tf, Tg;
 | |
| 		    Tg = Ci[WS(csi, 5)];
 | |
| 		    Th = KP1_732050807 * Tg;
 | |
| 		    T1 = Cr[0];
 | |
| 		    T2 = Cr[WS(csr, 5)];
 | |
| 		    Tf = T1 - T2;
 | |
| 		    T3 = FMA(KP2_000000000, T2, T1);
 | |
| 		    Tu = Tf - Th;
 | |
| 		    Ti = Tf + Th;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T4, TD, T9, TI, T5, T6, T7, Ta, Tb, Tc, Tr, TH, Tm, TC, Tj;
 | |
| 		    E To;
 | |
| 		    T4 = Cr[WS(csr, 3)];
 | |
| 		    TD = Ci[WS(csi, 3)];
 | |
| 		    T9 = Cr[WS(csr, 6)];
 | |
| 		    TI = Ci[WS(csi, 6)];
 | |
| 		    T5 = Cr[WS(csr, 7)];
 | |
| 		    T6 = Cr[WS(csr, 2)];
 | |
| 		    T7 = T5 + T6;
 | |
| 		    Ta = Cr[WS(csr, 4)];
 | |
| 		    Tb = Cr[WS(csr, 1)];
 | |
| 		    Tc = Ta + Tb;
 | |
| 		    {
 | |
| 			 E Tp, Tq, Tk, Tl;
 | |
| 			 Tp = Ci[WS(csi, 4)];
 | |
| 			 Tq = Ci[WS(csi, 1)];
 | |
| 			 Tr = KP866025403 * (Tp + Tq);
 | |
| 			 TH = Tp - Tq;
 | |
| 			 Tk = Ci[WS(csi, 7)];
 | |
| 			 Tl = Ci[WS(csi, 2)];
 | |
| 			 Tm = KP866025403 * (Tk - Tl);
 | |
| 			 TC = Tk + Tl;
 | |
| 		    }
 | |
| 		    TB = KP866025403 * (T5 - T6);
 | |
| 		    TZ = TD - TC;
 | |
| 		    T10 = TI - TH;
 | |
| 		    TE = FMA(KP500000000, TC, TD);
 | |
| 		    TG = KP866025403 * (Ta - Tb);
 | |
| 		    TJ = FMA(KP500000000, TH, TI);
 | |
| 		    Tj = FNMS(KP500000000, T7, T4);
 | |
| 		    Tn = Tj - Tm;
 | |
| 		    Tv = Tj + Tm;
 | |
| 		    To = FNMS(KP500000000, Tc, T9);
 | |
| 		    Ts = To - Tr;
 | |
| 		    Tw = To + Tr;
 | |
| 		    T8 = T4 + T7;
 | |
| 		    Td = T9 + Tc;
 | |
| 		    Te = T8 + Td;
 | |
| 	       }
 | |
| 	       R0[0] = FMA(KP2_000000000, Te, T3);
 | |
| 	       {
 | |
| 		    E T11, T13, TY, T12, TW, TX;
 | |
| 		    T11 = FNMS(KP1_902113032, T10, KP1_175570504 * TZ);
 | |
| 		    T13 = FMA(KP1_902113032, TZ, KP1_175570504 * T10);
 | |
| 		    TW = FNMS(KP500000000, Te, T3);
 | |
| 		    TX = KP1_118033988 * (T8 - Td);
 | |
| 		    TY = TW - TX;
 | |
| 		    T12 = TX + TW;
 | |
| 		    R0[WS(rs, 6)] = TY - T11;
 | |
| 		    R1[WS(rs, 4)] = T12 + T13;
 | |
| 		    R1[WS(rs, 1)] = TY + T11;
 | |
| 		    R0[WS(rs, 3)] = T12 - T13;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E TP, Tt, TO, TT, TV, TR, TS, TU, TQ;
 | |
| 		    TP = KP1_118033988 * (Tn - Ts);
 | |
| 		    Tt = Tn + Ts;
 | |
| 		    TO = FNMS(KP500000000, Tt, Ti);
 | |
| 		    TR = TE - TB;
 | |
| 		    TS = TJ - TG;
 | |
| 		    TT = FNMS(KP1_902113032, TS, KP1_175570504 * TR);
 | |
| 		    TV = FMA(KP1_902113032, TR, KP1_175570504 * TS);
 | |
| 		    R1[WS(rs, 2)] = FMA(KP2_000000000, Tt, Ti);
 | |
| 		    TU = TP + TO;
 | |
| 		    R1[WS(rs, 5)] = TU - TV;
 | |
| 		    R0[WS(rs, 7)] = TU + TV;
 | |
| 		    TQ = TO - TP;
 | |
| 		    R0[WS(rs, 1)] = TQ - TT;
 | |
| 		    R0[WS(rs, 4)] = TQ + TT;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E Tz, Tx, Ty, TL, TN, TF, TK, TM, TA;
 | |
| 		    Tz = KP1_118033988 * (Tv - Tw);
 | |
| 		    Tx = Tv + Tw;
 | |
| 		    Ty = FNMS(KP500000000, Tx, Tu);
 | |
| 		    TF = TB + TE;
 | |
| 		    TK = TG + TJ;
 | |
| 		    TL = FNMS(KP1_902113032, TK, KP1_175570504 * TF);
 | |
| 		    TN = FMA(KP1_902113032, TF, KP1_175570504 * TK);
 | |
| 		    R0[WS(rs, 5)] = FMA(KP2_000000000, Tx, Tu);
 | |
| 		    TM = Tz + Ty;
 | |
| 		    R1[0] = TM - TN;
 | |
| 		    R0[WS(rs, 2)] = TM + TN;
 | |
| 		    TA = Ty - Tz;
 | |
| 		    R1[WS(rs, 3)] = TA - TL;
 | |
| 		    R1[WS(rs, 6)] = TA + TL;
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const kr2c_desc desc = { 15, "r2cb_15", { 47, 14, 17, 0 }, &GENUS };
 | |
| 
 | |
| void X(codelet_r2cb_15) (planner *p) { X(kr2c_register) (p, r2cb_15, &desc);
 | |
| }
 | |
| 
 | |
| #endif
 | 
