152 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			152 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* FFTW-MPI internal header file */
 | |
| #ifndef __IFFTW_MPI_H__
 | |
| #define __IFFTW_MPI_H__
 | |
| 
 | |
| #include "kernel/ifftw.h"
 | |
| #include "rdft/rdft.h"
 | |
| 
 | |
| #include <mpi.h>
 | |
| 
 | |
| /* mpi problem flags: problem-dependent meaning, but in general
 | |
|    SCRAMBLED means some reordering *within* the dimensions, while
 | |
|    TRANSPOSED means some reordering *of* the dimensions */
 | |
| #define SCRAMBLED_IN (1 << 0)
 | |
| #define SCRAMBLED_OUT (1 << 1)
 | |
| #define TRANSPOSED_IN (1 << 2)
 | |
| #define TRANSPOSED_OUT (1 << 3)
 | |
| #define RANK1_BIGVEC_ONLY (1 << 4) /* for rank=1, allow only bigvec solver */
 | |
| 
 | |
| #define ONLY_SCRAMBLEDP(flags) (!((flags) & ~(SCRAMBLED_IN|SCRAMBLED_OUT)))
 | |
| #define ONLY_TRANSPOSEDP(flags) (!((flags) & ~(TRANSPOSED_IN|TRANSPOSED_OUT)))
 | |
| 
 | |
| #if defined(FFTW_SINGLE)
 | |
| #  define FFTW_MPI_TYPE MPI_FLOAT
 | |
| #elif defined(FFTW_LDOUBLE)
 | |
| #  define FFTW_MPI_TYPE MPI_LONG_DOUBLE
 | |
| #elif defined(FFTW_QUAD)
 | |
| #  error MPI quad-precision type is unknown
 | |
| #else
 | |
| #  define FFTW_MPI_TYPE MPI_DOUBLE
 | |
| #endif
 | |
| 
 | |
| /* all fftw-mpi identifiers start with fftw_mpi (or fftwf_mpi etc.) */
 | |
| #define XM(name) X(CONCAT(mpi_, name))
 | |
| 
 | |
| /***********************************************************************/
 | |
| /* block distributions */
 | |
| 
 | |
| /* a distributed dimension of length n with input and output block
 | |
|    sizes ib and ob, respectively. */
 | |
| typedef enum { IB = 0, OB } block_kind;
 | |
| typedef struct {
 | |
|      INT n;
 | |
|      INT b[2]; /* b[IB], b[OB] */
 | |
| } ddim;
 | |
| 
 | |
| /* Loop over k in {IB, OB}.  Note: need explicit casts for C++. */
 | |
| #define FORALL_BLOCK_KIND(k) for (k = IB; k <= OB; k = (block_kind) (((int) k) + 1))
 | |
| 
 | |
| /* unlike tensors in the serial FFTW, the ordering of the dtensor
 | |
|    dimensions matters - both the array and the block layout are
 | |
|    row-major order. */
 | |
| typedef struct {
 | |
|      int rnk;
 | |
| #if defined(STRUCT_HACK_KR)
 | |
|      ddim dims[1];
 | |
| #elif defined(STRUCT_HACK_C99)
 | |
|      ddim dims[];
 | |
| #else
 | |
|      ddim *dims;
 | |
| #endif
 | |
| } dtensor;
 | |
| 
 | |
| 
 | |
| /* dtensor.c: */
 | |
| dtensor *XM(mkdtensor)(int rnk);
 | |
| void XM(dtensor_destroy)(dtensor *sz);
 | |
| dtensor *XM(dtensor_copy)(const dtensor *sz);
 | |
| dtensor *XM(dtensor_canonical)(const dtensor *sz, int compress);
 | |
| int XM(dtensor_validp)(const dtensor *sz);
 | |
| void XM(dtensor_md5)(md5 *p, const dtensor *t);
 | |
| void XM(dtensor_print)(const dtensor *t, printer *p);
 | |
| 
 | |
| /* block.c: */
 | |
| 
 | |
| /* for a single distributed dimension: */
 | |
| INT XM(num_blocks)(INT n, INT block);
 | |
| int XM(num_blocks_ok)(INT n, INT block, MPI_Comm comm);
 | |
| INT XM(default_block)(INT n, int n_pes);
 | |
| INT XM(block)(INT n, INT block, int which_block);
 | |
| 
 | |
| /* for multiple distributed dimensions: */
 | |
| INT XM(num_blocks_total)(const dtensor *sz, block_kind k);
 | |
| int XM(idle_process)(const dtensor *sz, block_kind k, int which_pe);
 | |
| void XM(block_coords)(const dtensor *sz, block_kind k, int which_pe, 
 | |
| 		     INT *coords);
 | |
| INT XM(total_block)(const dtensor *sz, block_kind k, int which_pe);
 | |
| int XM(is_local_after)(int dim, const dtensor *sz, block_kind k);
 | |
| int XM(is_local)(const dtensor *sz, block_kind k);
 | |
| int XM(is_block1d)(const dtensor *sz, block_kind k);
 | |
| 
 | |
| /* choose-radix.c */
 | |
| INT XM(choose_radix)(ddim d, int n_pes, unsigned flags, int sign,
 | |
|                      INT rblock[2], INT mblock[2]);
 | |
| 
 | |
| /***********************************************************************/
 | |
| /* any_true.c */
 | |
| int XM(any_true)(int condition, MPI_Comm comm);
 | |
| int XM(md5_equal)(md5 m, MPI_Comm comm);
 | |
| 
 | |
| /* conf.c */
 | |
| void XM(conf_standard)(planner *p);
 | |
| 
 | |
| /***********************************************************************/
 | |
| /* rearrange.c */
 | |
| 
 | |
| /* Different ways to rearrange the vector dimension vn during transposition,
 | |
|    reflecting different tradeoffs between ease of transposition and
 | |
|    contiguity during the subsequent DFTs.
 | |
| 
 | |
|    TODO: can we pare this down to CONTIG and DISCONTIG, at least
 | |
|    in MEASURE mode?  SQUARE_MIDDLE is also used for 1d destroy-input DFTs. */
 | |
| typedef enum {
 | |
|      CONTIG = 0, /* vn x 1: make subsequent DFTs contiguous */
 | |
|      DISCONTIG, /* P x (vn/P) for P processes */
 | |
|      SQUARE_BEFORE, /* try to get square transpose at beginning */
 | |
|      SQUARE_MIDDLE, /* try to get square transpose in the middle */
 | |
|      SQUARE_AFTER /* try to get square transpose at end */
 | |
| } rearrangement;
 | |
| 
 | |
| /* skipping SQUARE_AFTER since it doesn't seem to offer any advantage
 | |
|    over SQUARE_BEFORE */
 | |
| #define FORALL_REARRANGE(rearrange) for (rearrange = CONTIG; rearrange <= SQUARE_MIDDLE; rearrange = (rearrangement) (((int) rearrange) + 1))
 | |
| 
 | |
| int XM(rearrange_applicable)(rearrangement rearrange, 
 | |
| 			     ddim dim0, INT vn, int n_pes);
 | |
| INT XM(rearrange_ny)(rearrangement rearrange, ddim dim0, INT vn, int n_pes);
 | |
| 
 | |
| /***********************************************************************/
 | |
| 
 | |
| #endif /* __IFFTW_MPI_H__ */
 | |
| 
 | 
