2164 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2164 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* deflate.c -- compress data using the deflation algorithm
 | |
|  * Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler
 | |
|  * For conditions of distribution and use, see copyright notice in zlib.h
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *  ALGORITHM
 | |
|  *
 | |
|  *      The "deflation" process depends on being able to identify portions
 | |
|  *      of the input text which are identical to earlier input (within a
 | |
|  *      sliding window trailing behind the input currently being processed).
 | |
|  *
 | |
|  *      The most straightforward technique turns out to be the fastest for
 | |
|  *      most input files: try all possible matches and select the longest.
 | |
|  *      The key feature of this algorithm is that insertions into the string
 | |
|  *      dictionary are very simple and thus fast, and deletions are avoided
 | |
|  *      completely. Insertions are performed at each input character, whereas
 | |
|  *      string matches are performed only when the previous match ends. So it
 | |
|  *      is preferable to spend more time in matches to allow very fast string
 | |
|  *      insertions and avoid deletions. The matching algorithm for small
 | |
|  *      strings is inspired from that of Rabin & Karp. A brute force approach
 | |
|  *      is used to find longer strings when a small match has been found.
 | |
|  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
 | |
|  *      (by Leonid Broukhis).
 | |
|  *         A previous version of this file used a more sophisticated algorithm
 | |
|  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
 | |
|  *      time, but has a larger average cost, uses more memory and is patented.
 | |
|  *      However the F&G algorithm may be faster for some highly redundant
 | |
|  *      files if the parameter max_chain_length (described below) is too large.
 | |
|  *
 | |
|  *  ACKNOWLEDGEMENTS
 | |
|  *
 | |
|  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
 | |
|  *      I found it in 'freeze' written by Leonid Broukhis.
 | |
|  *      Thanks to many people for bug reports and testing.
 | |
|  *
 | |
|  *  REFERENCES
 | |
|  *
 | |
|  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
 | |
|  *      Available in http://tools.ietf.org/html/rfc1951
 | |
|  *
 | |
|  *      A description of the Rabin and Karp algorithm is given in the book
 | |
|  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
 | |
|  *
 | |
|  *      Fiala,E.R., and Greene,D.H.
 | |
|  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* @(#) $Id$ */
 | |
| 
 | |
| #include "deflate.h"
 | |
| 
 | |
| const char deflate_copyright[] =
 | |
|    " deflate 1.2.11 Copyright 1995-2017 Jean-loup Gailly and Mark Adler ";
 | |
| /*
 | |
|   If you use the zlib library in a product, an acknowledgment is welcome
 | |
|   in the documentation of your product. If for some reason you cannot
 | |
|   include such an acknowledgment, I would appreciate that you keep this
 | |
|   copyright string in the executable of your product.
 | |
|  */
 | |
| 
 | |
| /* ===========================================================================
 | |
|  *  Function prototypes.
 | |
|  */
 | |
| typedef enum {
 | |
|     need_more,      /* block not completed, need more input or more output */
 | |
|     block_done,     /* block flush performed */
 | |
|     finish_started, /* finish started, need only more output at next deflate */
 | |
|     finish_done     /* finish done, accept no more input or output */
 | |
| } block_state;
 | |
| 
 | |
| typedef block_state (*compress_func) OF((deflate_state *s, int flush));
 | |
| /* Compression function. Returns the block state after the call. */
 | |
| 
 | |
| local int deflateStateCheck      OF((z_streamp strm));
 | |
| local void slide_hash     OF((deflate_state *s));
 | |
| local void fill_window    OF((deflate_state *s));
 | |
| local block_state deflate_stored OF((deflate_state *s, int flush));
 | |
| local block_state deflate_fast   OF((deflate_state *s, int flush));
 | |
| #ifndef FASTEST
 | |
| local block_state deflate_slow   OF((deflate_state *s, int flush));
 | |
| #endif
 | |
| local block_state deflate_rle    OF((deflate_state *s, int flush));
 | |
| local block_state deflate_huff   OF((deflate_state *s, int flush));
 | |
| local void lm_init        OF((deflate_state *s));
 | |
| local void putShortMSB    OF((deflate_state *s, uInt b));
 | |
| local void flush_pending  OF((z_streamp strm));
 | |
| local unsigned read_buf   OF((z_streamp strm, Bytef *buf, unsigned size));
 | |
| #ifdef ASMV
 | |
| #  pragma message("Assembler code may have bugs -- use at your own risk")
 | |
|       void match_init OF((void)); /* asm code initialization */
 | |
|       uInt longest_match  OF((deflate_state *s, IPos cur_match));
 | |
| #else
 | |
| local uInt longest_match  OF((deflate_state *s, IPos cur_match));
 | |
| #endif
 | |
| 
 | |
| #ifdef ZLIB_DEBUG
 | |
| local  void check_match OF((deflate_state *s, IPos start, IPos match,
 | |
|                             int length));
 | |
| #endif
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Local data
 | |
|  */
 | |
| 
 | |
| #define NIL 0
 | |
| /* Tail of hash chains */
 | |
| 
 | |
| #ifndef TOO_FAR
 | |
| #  define TOO_FAR 4096
 | |
| #endif
 | |
| /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
 | |
| 
 | |
| /* Values for max_lazy_match, good_match and max_chain_length, depending on
 | |
|  * the desired pack level (0..9). The values given below have been tuned to
 | |
|  * exclude worst case performance for pathological files. Better values may be
 | |
|  * found for specific files.
 | |
|  */
 | |
| typedef struct config_s {
 | |
|    ush good_length; /* reduce lazy search above this match length */
 | |
|    ush max_lazy;    /* do not perform lazy search above this match length */
 | |
|    ush nice_length; /* quit search above this match length */
 | |
|    ush max_chain;
 | |
|    compress_func func;
 | |
| } config;
 | |
| 
 | |
| #ifdef FASTEST
 | |
| local const config configuration_table[2] = {
 | |
| /*      good lazy nice chain */
 | |
| /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
 | |
| /* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
 | |
| #else
 | |
| local const config configuration_table[10] = {
 | |
| /*      good lazy nice chain */
 | |
| /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
 | |
| /* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
 | |
| /* 2 */ {4,    5, 16,    8, deflate_fast},
 | |
| /* 3 */ {4,    6, 32,   32, deflate_fast},
 | |
| 
 | |
| /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
 | |
| /* 5 */ {8,   16, 32,   32, deflate_slow},
 | |
| /* 6 */ {8,   16, 128, 128, deflate_slow},
 | |
| /* 7 */ {8,   32, 128, 256, deflate_slow},
 | |
| /* 8 */ {32, 128, 258, 1024, deflate_slow},
 | |
| /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
 | |
| #endif
 | |
| 
 | |
| /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
 | |
|  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
 | |
|  * meaning.
 | |
|  */
 | |
| 
 | |
| /* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
 | |
| #define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Update a hash value with the given input byte
 | |
|  * IN  assertion: all calls to UPDATE_HASH are made with consecutive input
 | |
|  *    characters, so that a running hash key can be computed from the previous
 | |
|  *    key instead of complete recalculation each time.
 | |
|  */
 | |
| #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
 | |
| 
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Insert string str in the dictionary and set match_head to the previous head
 | |
|  * of the hash chain (the most recent string with same hash key). Return
 | |
|  * the previous length of the hash chain.
 | |
|  * If this file is compiled with -DFASTEST, the compression level is forced
 | |
|  * to 1, and no hash chains are maintained.
 | |
|  * IN  assertion: all calls to INSERT_STRING are made with consecutive input
 | |
|  *    characters and the first MIN_MATCH bytes of str are valid (except for
 | |
|  *    the last MIN_MATCH-1 bytes of the input file).
 | |
|  */
 | |
| #ifdef FASTEST
 | |
| #define INSERT_STRING(s, str, match_head) \
 | |
|    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
 | |
|     match_head = s->head[s->ins_h], \
 | |
|     s->head[s->ins_h] = (Pos)(str))
 | |
| #else
 | |
| #define INSERT_STRING(s, str, match_head) \
 | |
|    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
 | |
|     match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
 | |
|     s->head[s->ins_h] = (Pos)(str))
 | |
| #endif
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
 | |
|  * prev[] will be initialized on the fly.
 | |
|  */
 | |
| #define CLEAR_HASH(s) \
 | |
|     s->head[s->hash_size-1] = NIL; \
 | |
|     zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Slide the hash table when sliding the window down (could be avoided with 32
 | |
|  * bit values at the expense of memory usage). We slide even when level == 0 to
 | |
|  * keep the hash table consistent if we switch back to level > 0 later.
 | |
|  */
 | |
| local void slide_hash(s)
 | |
|     deflate_state *s;
 | |
| {
 | |
|     unsigned n, m;
 | |
|     Posf *p;
 | |
|     uInt wsize = s->w_size;
 | |
| 
 | |
|     n = s->hash_size;
 | |
|     p = &s->head[n];
 | |
|     do {
 | |
|         m = *--p;
 | |
|         *p = (Pos)(m >= wsize ? m - wsize : NIL);
 | |
|     } while (--n);
 | |
|     n = wsize;
 | |
| #ifndef FASTEST
 | |
|     p = &s->prev[n];
 | |
|     do {
 | |
|         m = *--p;
 | |
|         *p = (Pos)(m >= wsize ? m - wsize : NIL);
 | |
|         /* If n is not on any hash chain, prev[n] is garbage but
 | |
|          * its value will never be used.
 | |
|          */
 | |
|     } while (--n);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* ========================================================================= */
 | |
| int ZEXPORT deflateInit_(strm, level, version, stream_size)
 | |
|     z_streamp strm;
 | |
|     int level;
 | |
|     const char *version;
 | |
|     int stream_size;
 | |
| {
 | |
|     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
 | |
|                          Z_DEFAULT_STRATEGY, version, stream_size);
 | |
|     /* To do: ignore strm->next_in if we use it as window */
 | |
| }
 | |
| 
 | |
| /* ========================================================================= */
 | |
| int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
 | |
|                   version, stream_size)
 | |
|     z_streamp strm;
 | |
|     int  level;
 | |
|     int  method;
 | |
|     int  windowBits;
 | |
|     int  memLevel;
 | |
|     int  strategy;
 | |
|     const char *version;
 | |
|     int stream_size;
 | |
| {
 | |
|     deflate_state *s;
 | |
|     int wrap = 1;
 | |
|     static const char my_version[] = ZLIB_VERSION;
 | |
| 
 | |
|     ushf *overlay;
 | |
|     /* We overlay pending_buf and d_buf+l_buf. This works since the average
 | |
|      * output size for (length,distance) codes is <= 24 bits.
 | |
|      */
 | |
| 
 | |
|     if (version == Z_NULL || version[0] != my_version[0] ||
 | |
|         stream_size != sizeof(z_stream)) {
 | |
|         return Z_VERSION_ERROR;
 | |
|     }
 | |
|     if (strm == Z_NULL) return Z_STREAM_ERROR;
 | |
| 
 | |
|     strm->msg = Z_NULL;
 | |
|     if (strm->zalloc == (alloc_func)0) {
 | |
| #ifdef Z_SOLO
 | |
|         return Z_STREAM_ERROR;
 | |
| #else
 | |
|         strm->zalloc = zcalloc;
 | |
|         strm->opaque = (voidpf)0;
 | |
| #endif
 | |
|     }
 | |
|     if (strm->zfree == (free_func)0)
 | |
| #ifdef Z_SOLO
 | |
|         return Z_STREAM_ERROR;
 | |
| #else
 | |
|         strm->zfree = zcfree;
 | |
| #endif
 | |
| 
 | |
| #ifdef FASTEST
 | |
|     if (level != 0) level = 1;
 | |
| #else
 | |
|     if (level == Z_DEFAULT_COMPRESSION) level = 6;
 | |
| #endif
 | |
| 
 | |
|     if (windowBits < 0) { /* suppress zlib wrapper */
 | |
|         wrap = 0;
 | |
|         windowBits = -windowBits;
 | |
|     }
 | |
| #ifdef GZIP
 | |
|     else if (windowBits > 15) {
 | |
|         wrap = 2;       /* write gzip wrapper instead */
 | |
|         windowBits -= 16;
 | |
|     }
 | |
| #endif
 | |
|     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
 | |
|         windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
 | |
|         strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
 | |
|         return Z_STREAM_ERROR;
 | |
|     }
 | |
|     if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
 | |
|     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
 | |
|     if (s == Z_NULL) return Z_MEM_ERROR;
 | |
|     strm->state = (struct internal_state FAR *)s;
 | |
|     s->strm = strm;
 | |
|     s->status = INIT_STATE;     /* to pass state test in deflateReset() */
 | |
| 
 | |
|     s->wrap = wrap;
 | |
|     s->gzhead = Z_NULL;
 | |
|     s->w_bits = (uInt)windowBits;
 | |
|     s->w_size = 1 << s->w_bits;
 | |
|     s->w_mask = s->w_size - 1;
 | |
| 
 | |
|     s->hash_bits = (uInt)memLevel + 7;
 | |
|     s->hash_size = 1 << s->hash_bits;
 | |
|     s->hash_mask = s->hash_size - 1;
 | |
|     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
 | |
| 
 | |
|     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
 | |
|     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
 | |
|     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
 | |
| 
 | |
|     s->high_water = 0;      /* nothing written to s->window yet */
 | |
| 
 | |
|     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
 | |
| 
 | |
|     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
 | |
|     s->pending_buf = (uchf *) overlay;
 | |
|     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
 | |
| 
 | |
|     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
 | |
|         s->pending_buf == Z_NULL) {
 | |
|         s->status = FINISH_STATE;
 | |
|         strm->msg = ERR_MSG(Z_MEM_ERROR);
 | |
|         deflateEnd (strm);
 | |
|         return Z_MEM_ERROR;
 | |
|     }
 | |
|     s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
 | |
|     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
 | |
| 
 | |
|     s->level = level;
 | |
|     s->strategy = strategy;
 | |
|     s->method = (Byte)method;
 | |
| 
 | |
|     return deflateReset(strm);
 | |
| }
 | |
| 
 | |
| /* =========================================================================
 | |
|  * Check for a valid deflate stream state. Return 0 if ok, 1 if not.
 | |
|  */
 | |
| local int deflateStateCheck (strm)
 | |
|     z_streamp strm;
 | |
| {
 | |
|     deflate_state *s;
 | |
|     if (strm == Z_NULL ||
 | |
|         strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
 | |
|         return 1;
 | |
|     s = strm->state;
 | |
|     if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
 | |
| #ifdef GZIP
 | |
|                                            s->status != GZIP_STATE &&
 | |
| #endif
 | |
|                                            s->status != EXTRA_STATE &&
 | |
|                                            s->status != NAME_STATE &&
 | |
|                                            s->status != COMMENT_STATE &&
 | |
|                                            s->status != HCRC_STATE &&
 | |
|                                            s->status != BUSY_STATE &&
 | |
|                                            s->status != FINISH_STATE))
 | |
|         return 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* ========================================================================= */
 | |
| int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
 | |
|     z_streamp strm;
 | |
|     const Bytef *dictionary;
 | |
|     uInt  dictLength;
 | |
| {
 | |
|     deflate_state *s;
 | |
|     uInt str, n;
 | |
|     int wrap;
 | |
|     unsigned avail;
 | |
|     z_const unsigned char *next;
 | |
| 
 | |
|     if (deflateStateCheck(strm) || dictionary == Z_NULL)
 | |
|         return Z_STREAM_ERROR;
 | |
|     s = strm->state;
 | |
|     wrap = s->wrap;
 | |
|     if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
 | |
|         return Z_STREAM_ERROR;
 | |
| 
 | |
|     /* when using zlib wrappers, compute Adler-32 for provided dictionary */
 | |
|     if (wrap == 1)
 | |
|         strm->adler = adler32(strm->adler, dictionary, dictLength);
 | |
|     s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */
 | |
| 
 | |
|     /* if dictionary would fill window, just replace the history */
 | |
|     if (dictLength >= s->w_size) {
 | |
|         if (wrap == 0) {            /* already empty otherwise */
 | |
|             CLEAR_HASH(s);
 | |
|             s->strstart = 0;
 | |
|             s->block_start = 0L;
 | |
|             s->insert = 0;
 | |
|         }
 | |
|         dictionary += dictLength - s->w_size;  /* use the tail */
 | |
|         dictLength = s->w_size;
 | |
|     }
 | |
| 
 | |
|     /* insert dictionary into window and hash */
 | |
|     avail = strm->avail_in;
 | |
|     next = strm->next_in;
 | |
|     strm->avail_in = dictLength;
 | |
|     strm->next_in = (z_const Bytef *)dictionary;
 | |
|     fill_window(s);
 | |
|     while (s->lookahead >= MIN_MATCH) {
 | |
|         str = s->strstart;
 | |
|         n = s->lookahead - (MIN_MATCH-1);
 | |
|         do {
 | |
|             UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
 | |
| #ifndef FASTEST
 | |
|             s->prev[str & s->w_mask] = s->head[s->ins_h];
 | |
| #endif
 | |
|             s->head[s->ins_h] = (Pos)str;
 | |
|             str++;
 | |
|         } while (--n);
 | |
|         s->strstart = str;
 | |
|         s->lookahead = MIN_MATCH-1;
 | |
|         fill_window(s);
 | |
|     }
 | |
|     s->strstart += s->lookahead;
 | |
|     s->block_start = (long)s->strstart;
 | |
|     s->insert = s->lookahead;
 | |
|     s->lookahead = 0;
 | |
|     s->match_length = s->prev_length = MIN_MATCH-1;
 | |
|     s->match_available = 0;
 | |
|     strm->next_in = next;
 | |
|     strm->avail_in = avail;
 | |
|     s->wrap = wrap;
 | |
|     return Z_OK;
 | |
| }
 | |
| 
 | |
| /* ========================================================================= */
 | |
| int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength)
 | |
|     z_streamp strm;
 | |
|     Bytef *dictionary;
 | |
|     uInt  *dictLength;
 | |
| {
 | |
|     deflate_state *s;
 | |
|     uInt len;
 | |
| 
 | |
|     if (deflateStateCheck(strm))
 | |
|         return Z_STREAM_ERROR;
 | |
|     s = strm->state;
 | |
|     len = s->strstart + s->lookahead;
 | |
|     if (len > s->w_size)
 | |
|         len = s->w_size;
 | |
|     if (dictionary != Z_NULL && len)
 | |
|         zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
 | |
|     if (dictLength != Z_NULL)
 | |
|         *dictLength = len;
 | |
|     return Z_OK;
 | |
| }
 | |
| 
 | |
| /* ========================================================================= */
 | |
| int ZEXPORT deflateResetKeep (strm)
 | |
|     z_streamp strm;
 | |
| {
 | |
|     deflate_state *s;
 | |
| 
 | |
|     if (deflateStateCheck(strm)) {
 | |
|         return Z_STREAM_ERROR;
 | |
|     }
 | |
| 
 | |
|     strm->total_in = strm->total_out = 0;
 | |
|     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
 | |
|     strm->data_type = Z_UNKNOWN;
 | |
| 
 | |
|     s = (deflate_state *)strm->state;
 | |
|     s->pending = 0;
 | |
|     s->pending_out = s->pending_buf;
 | |
| 
 | |
|     if (s->wrap < 0) {
 | |
|         s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
 | |
|     }
 | |
|     s->status =
 | |
| #ifdef GZIP
 | |
|         s->wrap == 2 ? GZIP_STATE :
 | |
| #endif
 | |
|         s->wrap ? INIT_STATE : BUSY_STATE;
 | |
|     strm->adler =
 | |
| #ifdef GZIP
 | |
|         s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
 | |
| #endif
 | |
|         adler32(0L, Z_NULL, 0);
 | |
|     s->last_flush = Z_NO_FLUSH;
 | |
| 
 | |
|     _tr_init(s);
 | |
| 
 | |
|     return Z_OK;
 | |
| }
 | |
| 
 | |
| /* ========================================================================= */
 | |
| int ZEXPORT deflateReset (strm)
 | |
|     z_streamp strm;
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     ret = deflateResetKeep(strm);
 | |
|     if (ret == Z_OK)
 | |
|         lm_init(strm->state);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* ========================================================================= */
 | |
| int ZEXPORT deflateSetHeader (strm, head)
 | |
|     z_streamp strm;
 | |
|     gz_headerp head;
 | |
| {
 | |
|     if (deflateStateCheck(strm) || strm->state->wrap != 2)
 | |
|         return Z_STREAM_ERROR;
 | |
|     strm->state->gzhead = head;
 | |
|     return Z_OK;
 | |
| }
 | |
| 
 | |
| /* ========================================================================= */
 | |
| int ZEXPORT deflatePending (strm, pending, bits)
 | |
|     unsigned *pending;
 | |
|     int *bits;
 | |
|     z_streamp strm;
 | |
| {
 | |
|     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
 | |
|     if (pending != Z_NULL)
 | |
|         *pending = strm->state->pending;
 | |
|     if (bits != Z_NULL)
 | |
|         *bits = strm->state->bi_valid;
 | |
|     return Z_OK;
 | |
| }
 | |
| 
 | |
| /* ========================================================================= */
 | |
| int ZEXPORT deflatePrime (strm, bits, value)
 | |
|     z_streamp strm;
 | |
|     int bits;
 | |
|     int value;
 | |
| {
 | |
|     deflate_state *s;
 | |
|     int put;
 | |
| 
 | |
|     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
 | |
|     s = strm->state;
 | |
|     if ((Bytef *)(s->d_buf) < s->pending_out + ((Buf_size + 7) >> 3))
 | |
|         return Z_BUF_ERROR;
 | |
|     do {
 | |
|         put = Buf_size - s->bi_valid;
 | |
|         if (put > bits)
 | |
|             put = bits;
 | |
|         s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
 | |
|         s->bi_valid += put;
 | |
|         _tr_flush_bits(s);
 | |
|         value >>= put;
 | |
|         bits -= put;
 | |
|     } while (bits);
 | |
|     return Z_OK;
 | |
| }
 | |
| 
 | |
| /* ========================================================================= */
 | |
| int ZEXPORT deflateParams(strm, level, strategy)
 | |
|     z_streamp strm;
 | |
|     int level;
 | |
|     int strategy;
 | |
| {
 | |
|     deflate_state *s;
 | |
|     compress_func func;
 | |
| 
 | |
|     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
 | |
|     s = strm->state;
 | |
| 
 | |
| #ifdef FASTEST
 | |
|     if (level != 0) level = 1;
 | |
| #else
 | |
|     if (level == Z_DEFAULT_COMPRESSION) level = 6;
 | |
| #endif
 | |
|     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
 | |
|         return Z_STREAM_ERROR;
 | |
|     }
 | |
|     func = configuration_table[s->level].func;
 | |
| 
 | |
|     if ((strategy != s->strategy || func != configuration_table[level].func) &&
 | |
|         s->high_water) {
 | |
|         /* Flush the last buffer: */
 | |
|         int err = deflate(strm, Z_BLOCK);
 | |
|         if (err == Z_STREAM_ERROR)
 | |
|             return err;
 | |
|         if (strm->avail_out == 0)
 | |
|             return Z_BUF_ERROR;
 | |
|     }
 | |
|     if (s->level != level) {
 | |
|         if (s->level == 0 && s->matches != 0) {
 | |
|             if (s->matches == 1)
 | |
|                 slide_hash(s);
 | |
|             else
 | |
|                 CLEAR_HASH(s);
 | |
|             s->matches = 0;
 | |
|         }
 | |
|         s->level = level;
 | |
|         s->max_lazy_match   = configuration_table[level].max_lazy;
 | |
|         s->good_match       = configuration_table[level].good_length;
 | |
|         s->nice_match       = configuration_table[level].nice_length;
 | |
|         s->max_chain_length = configuration_table[level].max_chain;
 | |
|     }
 | |
|     s->strategy = strategy;
 | |
|     return Z_OK;
 | |
| }
 | |
| 
 | |
| /* ========================================================================= */
 | |
| int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
 | |
|     z_streamp strm;
 | |
|     int good_length;
 | |
|     int max_lazy;
 | |
|     int nice_length;
 | |
|     int max_chain;
 | |
| {
 | |
|     deflate_state *s;
 | |
| 
 | |
|     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
 | |
|     s = strm->state;
 | |
|     s->good_match = (uInt)good_length;
 | |
|     s->max_lazy_match = (uInt)max_lazy;
 | |
|     s->nice_match = nice_length;
 | |
|     s->max_chain_length = (uInt)max_chain;
 | |
|     return Z_OK;
 | |
| }
 | |
| 
 | |
| /* =========================================================================
 | |
|  * For the default windowBits of 15 and memLevel of 8, this function returns
 | |
|  * a close to exact, as well as small, upper bound on the compressed size.
 | |
|  * They are coded as constants here for a reason--if the #define's are
 | |
|  * changed, then this function needs to be changed as well.  The return
 | |
|  * value for 15 and 8 only works for those exact settings.
 | |
|  *
 | |
|  * For any setting other than those defaults for windowBits and memLevel,
 | |
|  * the value returned is a conservative worst case for the maximum expansion
 | |
|  * resulting from using fixed blocks instead of stored blocks, which deflate
 | |
|  * can emit on compressed data for some combinations of the parameters.
 | |
|  *
 | |
|  * This function could be more sophisticated to provide closer upper bounds for
 | |
|  * every combination of windowBits and memLevel.  But even the conservative
 | |
|  * upper bound of about 14% expansion does not seem onerous for output buffer
 | |
|  * allocation.
 | |
|  */
 | |
| uLong ZEXPORT deflateBound(strm, sourceLen)
 | |
|     z_streamp strm;
 | |
|     uLong sourceLen;
 | |
| {
 | |
|     deflate_state *s;
 | |
|     uLong complen, wraplen;
 | |
| 
 | |
|     /* conservative upper bound for compressed data */
 | |
|     complen = sourceLen +
 | |
|               ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
 | |
| 
 | |
|     /* if can't get parameters, return conservative bound plus zlib wrapper */
 | |
|     if (deflateStateCheck(strm))
 | |
|         return complen + 6;
 | |
| 
 | |
|     /* compute wrapper length */
 | |
|     s = strm->state;
 | |
|     switch (s->wrap) {
 | |
|     case 0:                                 /* raw deflate */
 | |
|         wraplen = 0;
 | |
|         break;
 | |
|     case 1:                                 /* zlib wrapper */
 | |
|         wraplen = 6 + (s->strstart ? 4 : 0);
 | |
|         break;
 | |
| #ifdef GZIP
 | |
|     case 2:                                 /* gzip wrapper */
 | |
|         wraplen = 18;
 | |
|         if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
 | |
|             Bytef *str;
 | |
|             if (s->gzhead->extra != Z_NULL)
 | |
|                 wraplen += 2 + s->gzhead->extra_len;
 | |
|             str = s->gzhead->name;
 | |
|             if (str != Z_NULL)
 | |
|                 do {
 | |
|                     wraplen++;
 | |
|                 } while (*str++);
 | |
|             str = s->gzhead->comment;
 | |
|             if (str != Z_NULL)
 | |
|                 do {
 | |
|                     wraplen++;
 | |
|                 } while (*str++);
 | |
|             if (s->gzhead->hcrc)
 | |
|                 wraplen += 2;
 | |
|         }
 | |
|         break;
 | |
| #endif
 | |
|     default:                                /* for compiler happiness */
 | |
|         wraplen = 6;
 | |
|     }
 | |
| 
 | |
|     /* if not default parameters, return conservative bound */
 | |
|     if (s->w_bits != 15 || s->hash_bits != 8 + 7)
 | |
|         return complen + wraplen;
 | |
| 
 | |
|     /* default settings: return tight bound for that case */
 | |
|     return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
 | |
|            (sourceLen >> 25) + 13 - 6 + wraplen;
 | |
| }
 | |
| 
 | |
| /* =========================================================================
 | |
|  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
 | |
|  * IN assertion: the stream state is correct and there is enough room in
 | |
|  * pending_buf.
 | |
|  */
 | |
| local void putShortMSB (s, b)
 | |
|     deflate_state *s;
 | |
|     uInt b;
 | |
| {
 | |
|     put_byte(s, (Byte)(b >> 8));
 | |
|     put_byte(s, (Byte)(b & 0xff));
 | |
| }
 | |
| 
 | |
| /* =========================================================================
 | |
|  * Flush as much pending output as possible. All deflate() output, except for
 | |
|  * some deflate_stored() output, goes through this function so some
 | |
|  * applications may wish to modify it to avoid allocating a large
 | |
|  * strm->next_out buffer and copying into it. (See also read_buf()).
 | |
|  */
 | |
| local void flush_pending(strm)
 | |
|     z_streamp strm;
 | |
| {
 | |
|     unsigned len;
 | |
|     deflate_state *s = strm->state;
 | |
| 
 | |
|     _tr_flush_bits(s);
 | |
|     len = s->pending;
 | |
|     if (len > strm->avail_out) len = strm->avail_out;
 | |
|     if (len == 0) return;
 | |
| 
 | |
|     zmemcpy(strm->next_out, s->pending_out, len);
 | |
|     strm->next_out  += len;
 | |
|     s->pending_out  += len;
 | |
|     strm->total_out += len;
 | |
|     strm->avail_out -= len;
 | |
|     s->pending      -= len;
 | |
|     if (s->pending == 0) {
 | |
|         s->pending_out = s->pending_buf;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
 | |
|  */
 | |
| #define HCRC_UPDATE(beg) \
 | |
|     do { \
 | |
|         if (s->gzhead->hcrc && s->pending > (beg)) \
 | |
|             strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
 | |
|                                 s->pending - (beg)); \
 | |
|     } while (0)
 | |
| 
 | |
| /* ========================================================================= */
 | |
| int ZEXPORT deflate (strm, flush)
 | |
|     z_streamp strm;
 | |
|     int flush;
 | |
| {
 | |
|     int old_flush; /* value of flush param for previous deflate call */
 | |
|     deflate_state *s;
 | |
| 
 | |
|     if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
 | |
|         return Z_STREAM_ERROR;
 | |
|     }
 | |
|     s = strm->state;
 | |
| 
 | |
|     if (strm->next_out == Z_NULL ||
 | |
|         (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
 | |
|         (s->status == FINISH_STATE && flush != Z_FINISH)) {
 | |
|         ERR_RETURN(strm, Z_STREAM_ERROR);
 | |
|     }
 | |
|     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
 | |
| 
 | |
|     old_flush = s->last_flush;
 | |
|     s->last_flush = flush;
 | |
| 
 | |
|     /* Flush as much pending output as possible */
 | |
|     if (s->pending != 0) {
 | |
|         flush_pending(strm);
 | |
|         if (strm->avail_out == 0) {
 | |
|             /* Since avail_out is 0, deflate will be called again with
 | |
|              * more output space, but possibly with both pending and
 | |
|              * avail_in equal to zero. There won't be anything to do,
 | |
|              * but this is not an error situation so make sure we
 | |
|              * return OK instead of BUF_ERROR at next call of deflate:
 | |
|              */
 | |
|             s->last_flush = -1;
 | |
|             return Z_OK;
 | |
|         }
 | |
| 
 | |
|     /* Make sure there is something to do and avoid duplicate consecutive
 | |
|      * flushes. For repeated and useless calls with Z_FINISH, we keep
 | |
|      * returning Z_STREAM_END instead of Z_BUF_ERROR.
 | |
|      */
 | |
|     } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
 | |
|                flush != Z_FINISH) {
 | |
|         ERR_RETURN(strm, Z_BUF_ERROR);
 | |
|     }
 | |
| 
 | |
|     /* User must not provide more input after the first FINISH: */
 | |
|     if (s->status == FINISH_STATE && strm->avail_in != 0) {
 | |
|         ERR_RETURN(strm, Z_BUF_ERROR);
 | |
|     }
 | |
| 
 | |
|     /* Write the header */
 | |
|     if (s->status == INIT_STATE) {
 | |
|         /* zlib header */
 | |
|         uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
 | |
|         uInt level_flags;
 | |
| 
 | |
|         if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
 | |
|             level_flags = 0;
 | |
|         else if (s->level < 6)
 | |
|             level_flags = 1;
 | |
|         else if (s->level == 6)
 | |
|             level_flags = 2;
 | |
|         else
 | |
|             level_flags = 3;
 | |
|         header |= (level_flags << 6);
 | |
|         if (s->strstart != 0) header |= PRESET_DICT;
 | |
|         header += 31 - (header % 31);
 | |
| 
 | |
|         putShortMSB(s, header);
 | |
| 
 | |
|         /* Save the adler32 of the preset dictionary: */
 | |
|         if (s->strstart != 0) {
 | |
|             putShortMSB(s, (uInt)(strm->adler >> 16));
 | |
|             putShortMSB(s, (uInt)(strm->adler & 0xffff));
 | |
|         }
 | |
|         strm->adler = adler32(0L, Z_NULL, 0);
 | |
|         s->status = BUSY_STATE;
 | |
| 
 | |
|         /* Compression must start with an empty pending buffer */
 | |
|         flush_pending(strm);
 | |
|         if (s->pending != 0) {
 | |
|             s->last_flush = -1;
 | |
|             return Z_OK;
 | |
|         }
 | |
|     }
 | |
| #ifdef GZIP
 | |
|     if (s->status == GZIP_STATE) {
 | |
|         /* gzip header */
 | |
|         strm->adler = crc32(0L, Z_NULL, 0);
 | |
|         put_byte(s, 31);
 | |
|         put_byte(s, 139);
 | |
|         put_byte(s, 8);
 | |
|         if (s->gzhead == Z_NULL) {
 | |
|             put_byte(s, 0);
 | |
|             put_byte(s, 0);
 | |
|             put_byte(s, 0);
 | |
|             put_byte(s, 0);
 | |
|             put_byte(s, 0);
 | |
|             put_byte(s, s->level == 9 ? 2 :
 | |
|                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
 | |
|                       4 : 0));
 | |
|             put_byte(s, OS_CODE);
 | |
|             s->status = BUSY_STATE;
 | |
| 
 | |
|             /* Compression must start with an empty pending buffer */
 | |
|             flush_pending(strm);
 | |
|             if (s->pending != 0) {
 | |
|                 s->last_flush = -1;
 | |
|                 return Z_OK;
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             put_byte(s, (s->gzhead->text ? 1 : 0) +
 | |
|                      (s->gzhead->hcrc ? 2 : 0) +
 | |
|                      (s->gzhead->extra == Z_NULL ? 0 : 4) +
 | |
|                      (s->gzhead->name == Z_NULL ? 0 : 8) +
 | |
|                      (s->gzhead->comment == Z_NULL ? 0 : 16)
 | |
|                      );
 | |
|             put_byte(s, (Byte)(s->gzhead->time & 0xff));
 | |
|             put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
 | |
|             put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
 | |
|             put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
 | |
|             put_byte(s, s->level == 9 ? 2 :
 | |
|                      (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
 | |
|                       4 : 0));
 | |
|             put_byte(s, s->gzhead->os & 0xff);
 | |
|             if (s->gzhead->extra != Z_NULL) {
 | |
|                 put_byte(s, s->gzhead->extra_len & 0xff);
 | |
|                 put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
 | |
|             }
 | |
|             if (s->gzhead->hcrc)
 | |
|                 strm->adler = crc32(strm->adler, s->pending_buf,
 | |
|                                     s->pending);
 | |
|             s->gzindex = 0;
 | |
|             s->status = EXTRA_STATE;
 | |
|         }
 | |
|     }
 | |
|     if (s->status == EXTRA_STATE) {
 | |
|         if (s->gzhead->extra != Z_NULL) {
 | |
|             ulg beg = s->pending;   /* start of bytes to update crc */
 | |
|             uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
 | |
|             while (s->pending + left > s->pending_buf_size) {
 | |
|                 uInt copy = s->pending_buf_size - s->pending;
 | |
|                 zmemcpy(s->pending_buf + s->pending,
 | |
|                         s->gzhead->extra + s->gzindex, copy);
 | |
|                 s->pending = s->pending_buf_size;
 | |
|                 HCRC_UPDATE(beg);
 | |
|                 s->gzindex += copy;
 | |
|                 flush_pending(strm);
 | |
|                 if (s->pending != 0) {
 | |
|                     s->last_flush = -1;
 | |
|                     return Z_OK;
 | |
|                 }
 | |
|                 beg = 0;
 | |
|                 left -= copy;
 | |
|             }
 | |
|             zmemcpy(s->pending_buf + s->pending,
 | |
|                     s->gzhead->extra + s->gzindex, left);
 | |
|             s->pending += left;
 | |
|             HCRC_UPDATE(beg);
 | |
|             s->gzindex = 0;
 | |
|         }
 | |
|         s->status = NAME_STATE;
 | |
|     }
 | |
|     if (s->status == NAME_STATE) {
 | |
|         if (s->gzhead->name != Z_NULL) {
 | |
|             ulg beg = s->pending;   /* start of bytes to update crc */
 | |
|             int val;
 | |
|             do {
 | |
|                 if (s->pending == s->pending_buf_size) {
 | |
|                     HCRC_UPDATE(beg);
 | |
|                     flush_pending(strm);
 | |
|                     if (s->pending != 0) {
 | |
|                         s->last_flush = -1;
 | |
|                         return Z_OK;
 | |
|                     }
 | |
|                     beg = 0;
 | |
|                 }
 | |
|                 val = s->gzhead->name[s->gzindex++];
 | |
|                 put_byte(s, val);
 | |
|             } while (val != 0);
 | |
|             HCRC_UPDATE(beg);
 | |
|             s->gzindex = 0;
 | |
|         }
 | |
|         s->status = COMMENT_STATE;
 | |
|     }
 | |
|     if (s->status == COMMENT_STATE) {
 | |
|         if (s->gzhead->comment != Z_NULL) {
 | |
|             ulg beg = s->pending;   /* start of bytes to update crc */
 | |
|             int val;
 | |
|             do {
 | |
|                 if (s->pending == s->pending_buf_size) {
 | |
|                     HCRC_UPDATE(beg);
 | |
|                     flush_pending(strm);
 | |
|                     if (s->pending != 0) {
 | |
|                         s->last_flush = -1;
 | |
|                         return Z_OK;
 | |
|                     }
 | |
|                     beg = 0;
 | |
|                 }
 | |
|                 val = s->gzhead->comment[s->gzindex++];
 | |
|                 put_byte(s, val);
 | |
|             } while (val != 0);
 | |
|             HCRC_UPDATE(beg);
 | |
|         }
 | |
|         s->status = HCRC_STATE;
 | |
|     }
 | |
|     if (s->status == HCRC_STATE) {
 | |
|         if (s->gzhead->hcrc) {
 | |
|             if (s->pending + 2 > s->pending_buf_size) {
 | |
|                 flush_pending(strm);
 | |
|                 if (s->pending != 0) {
 | |
|                     s->last_flush = -1;
 | |
|                     return Z_OK;
 | |
|                 }
 | |
|             }
 | |
|             put_byte(s, (Byte)(strm->adler & 0xff));
 | |
|             put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
 | |
|             strm->adler = crc32(0L, Z_NULL, 0);
 | |
|         }
 | |
|         s->status = BUSY_STATE;
 | |
| 
 | |
|         /* Compression must start with an empty pending buffer */
 | |
|         flush_pending(strm);
 | |
|         if (s->pending != 0) {
 | |
|             s->last_flush = -1;
 | |
|             return Z_OK;
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* Start a new block or continue the current one.
 | |
|      */
 | |
|     if (strm->avail_in != 0 || s->lookahead != 0 ||
 | |
|         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
 | |
|         block_state bstate;
 | |
| 
 | |
|         bstate = s->level == 0 ? deflate_stored(s, flush) :
 | |
|                  s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
 | |
|                  s->strategy == Z_RLE ? deflate_rle(s, flush) :
 | |
|                  (*(configuration_table[s->level].func))(s, flush);
 | |
| 
 | |
|         if (bstate == finish_started || bstate == finish_done) {
 | |
|             s->status = FINISH_STATE;
 | |
|         }
 | |
|         if (bstate == need_more || bstate == finish_started) {
 | |
|             if (strm->avail_out == 0) {
 | |
|                 s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
 | |
|             }
 | |
|             return Z_OK;
 | |
|             /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
 | |
|              * of deflate should use the same flush parameter to make sure
 | |
|              * that the flush is complete. So we don't have to output an
 | |
|              * empty block here, this will be done at next call. This also
 | |
|              * ensures that for a very small output buffer, we emit at most
 | |
|              * one empty block.
 | |
|              */
 | |
|         }
 | |
|         if (bstate == block_done) {
 | |
|             if (flush == Z_PARTIAL_FLUSH) {
 | |
|                 _tr_align(s);
 | |
|             } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
 | |
|                 _tr_stored_block(s, (char*)0, 0L, 0);
 | |
|                 /* For a full flush, this empty block will be recognized
 | |
|                  * as a special marker by inflate_sync().
 | |
|                  */
 | |
|                 if (flush == Z_FULL_FLUSH) {
 | |
|                     CLEAR_HASH(s);             /* forget history */
 | |
|                     if (s->lookahead == 0) {
 | |
|                         s->strstart = 0;
 | |
|                         s->block_start = 0L;
 | |
|                         s->insert = 0;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             flush_pending(strm);
 | |
|             if (strm->avail_out == 0) {
 | |
|               s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
 | |
|               return Z_OK;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (flush != Z_FINISH) return Z_OK;
 | |
|     if (s->wrap <= 0) return Z_STREAM_END;
 | |
| 
 | |
|     /* Write the trailer */
 | |
| #ifdef GZIP
 | |
|     if (s->wrap == 2) {
 | |
|         put_byte(s, (Byte)(strm->adler & 0xff));
 | |
|         put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
 | |
|         put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
 | |
|         put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
 | |
|         put_byte(s, (Byte)(strm->total_in & 0xff));
 | |
|         put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
 | |
|         put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
 | |
|         put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
 | |
|     }
 | |
|     else
 | |
| #endif
 | |
|     {
 | |
|         putShortMSB(s, (uInt)(strm->adler >> 16));
 | |
|         putShortMSB(s, (uInt)(strm->adler & 0xffff));
 | |
|     }
 | |
|     flush_pending(strm);
 | |
|     /* If avail_out is zero, the application will call deflate again
 | |
|      * to flush the rest.
 | |
|      */
 | |
|     if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
 | |
|     return s->pending != 0 ? Z_OK : Z_STREAM_END;
 | |
| }
 | |
| 
 | |
| /* ========================================================================= */
 | |
| int ZEXPORT deflateEnd (strm)
 | |
|     z_streamp strm;
 | |
| {
 | |
|     int status;
 | |
| 
 | |
|     if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
 | |
| 
 | |
|     status = strm->state->status;
 | |
| 
 | |
|     /* Deallocate in reverse order of allocations: */
 | |
|     TRY_FREE(strm, strm->state->pending_buf);
 | |
|     TRY_FREE(strm, strm->state->head);
 | |
|     TRY_FREE(strm, strm->state->prev);
 | |
|     TRY_FREE(strm, strm->state->window);
 | |
| 
 | |
|     ZFREE(strm, strm->state);
 | |
|     strm->state = Z_NULL;
 | |
| 
 | |
|     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
 | |
| }
 | |
| 
 | |
| /* =========================================================================
 | |
|  * Copy the source state to the destination state.
 | |
|  * To simplify the source, this is not supported for 16-bit MSDOS (which
 | |
|  * doesn't have enough memory anyway to duplicate compression states).
 | |
|  */
 | |
| int ZEXPORT deflateCopy (dest, source)
 | |
|     z_streamp dest;
 | |
|     z_streamp source;
 | |
| {
 | |
| #ifdef MAXSEG_64K
 | |
|     return Z_STREAM_ERROR;
 | |
| #else
 | |
|     deflate_state *ds;
 | |
|     deflate_state *ss;
 | |
|     ushf *overlay;
 | |
| 
 | |
| 
 | |
|     if (deflateStateCheck(source) || dest == Z_NULL) {
 | |
|         return Z_STREAM_ERROR;
 | |
|     }
 | |
| 
 | |
|     ss = source->state;
 | |
| 
 | |
|     zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
 | |
| 
 | |
|     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
 | |
|     if (ds == Z_NULL) return Z_MEM_ERROR;
 | |
|     dest->state = (struct internal_state FAR *) ds;
 | |
|     zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
 | |
|     ds->strm = dest;
 | |
| 
 | |
|     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
 | |
|     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
 | |
|     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
 | |
|     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
 | |
|     ds->pending_buf = (uchf *) overlay;
 | |
| 
 | |
|     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
 | |
|         ds->pending_buf == Z_NULL) {
 | |
|         deflateEnd (dest);
 | |
|         return Z_MEM_ERROR;
 | |
|     }
 | |
|     /* following zmemcpy do not work for 16-bit MSDOS */
 | |
|     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
 | |
|     zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
 | |
|     zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
 | |
|     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
 | |
| 
 | |
|     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
 | |
|     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
 | |
|     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
 | |
| 
 | |
|     ds->l_desc.dyn_tree = ds->dyn_ltree;
 | |
|     ds->d_desc.dyn_tree = ds->dyn_dtree;
 | |
|     ds->bl_desc.dyn_tree = ds->bl_tree;
 | |
| 
 | |
|     return Z_OK;
 | |
| #endif /* MAXSEG_64K */
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Read a new buffer from the current input stream, update the adler32
 | |
|  * and total number of bytes read.  All deflate() input goes through
 | |
|  * this function so some applications may wish to modify it to avoid
 | |
|  * allocating a large strm->next_in buffer and copying from it.
 | |
|  * (See also flush_pending()).
 | |
|  */
 | |
| local unsigned read_buf(strm, buf, size)
 | |
|     z_streamp strm;
 | |
|     Bytef *buf;
 | |
|     unsigned size;
 | |
| {
 | |
|     unsigned len = strm->avail_in;
 | |
| 
 | |
|     if (len > size) len = size;
 | |
|     if (len == 0) return 0;
 | |
| 
 | |
|     strm->avail_in  -= len;
 | |
| 
 | |
|     zmemcpy(buf, strm->next_in, len);
 | |
|     if (strm->state->wrap == 1) {
 | |
|         strm->adler = adler32(strm->adler, buf, len);
 | |
|     }
 | |
| #ifdef GZIP
 | |
|     else if (strm->state->wrap == 2) {
 | |
|         strm->adler = crc32(strm->adler, buf, len);
 | |
|     }
 | |
| #endif
 | |
|     strm->next_in  += len;
 | |
|     strm->total_in += len;
 | |
| 
 | |
|     return len;
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Initialize the "longest match" routines for a new zlib stream
 | |
|  */
 | |
| local void lm_init (s)
 | |
|     deflate_state *s;
 | |
| {
 | |
|     s->window_size = (ulg)2L*s->w_size;
 | |
| 
 | |
|     CLEAR_HASH(s);
 | |
| 
 | |
|     /* Set the default configuration parameters:
 | |
|      */
 | |
|     s->max_lazy_match   = configuration_table[s->level].max_lazy;
 | |
|     s->good_match       = configuration_table[s->level].good_length;
 | |
|     s->nice_match       = configuration_table[s->level].nice_length;
 | |
|     s->max_chain_length = configuration_table[s->level].max_chain;
 | |
| 
 | |
|     s->strstart = 0;
 | |
|     s->block_start = 0L;
 | |
|     s->lookahead = 0;
 | |
|     s->insert = 0;
 | |
|     s->match_length = s->prev_length = MIN_MATCH-1;
 | |
|     s->match_available = 0;
 | |
|     s->ins_h = 0;
 | |
| #ifndef FASTEST
 | |
| #ifdef ASMV
 | |
|     match_init(); /* initialize the asm code */
 | |
| #endif
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifndef FASTEST
 | |
| /* ===========================================================================
 | |
|  * Set match_start to the longest match starting at the given string and
 | |
|  * return its length. Matches shorter or equal to prev_length are discarded,
 | |
|  * in which case the result is equal to prev_length and match_start is
 | |
|  * garbage.
 | |
|  * IN assertions: cur_match is the head of the hash chain for the current
 | |
|  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
 | |
|  * OUT assertion: the match length is not greater than s->lookahead.
 | |
|  */
 | |
| #ifndef ASMV
 | |
| /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
 | |
|  * match.S. The code will be functionally equivalent.
 | |
|  */
 | |
| local uInt longest_match(s, cur_match)
 | |
|     deflate_state *s;
 | |
|     IPos cur_match;                             /* current match */
 | |
| {
 | |
|     unsigned chain_length = s->max_chain_length;/* max hash chain length */
 | |
|     register Bytef *scan = s->window + s->strstart; /* current string */
 | |
|     register Bytef *match;                      /* matched string */
 | |
|     register int len;                           /* length of current match */
 | |
|     int best_len = (int)s->prev_length;         /* best match length so far */
 | |
|     int nice_match = s->nice_match;             /* stop if match long enough */
 | |
|     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
 | |
|         s->strstart - (IPos)MAX_DIST(s) : NIL;
 | |
|     /* Stop when cur_match becomes <= limit. To simplify the code,
 | |
|      * we prevent matches with the string of window index 0.
 | |
|      */
 | |
|     Posf *prev = s->prev;
 | |
|     uInt wmask = s->w_mask;
 | |
| 
 | |
| #ifdef UNALIGNED_OK
 | |
|     /* Compare two bytes at a time. Note: this is not always beneficial.
 | |
|      * Try with and without -DUNALIGNED_OK to check.
 | |
|      */
 | |
|     register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
 | |
|     register ush scan_start = *(ushf*)scan;
 | |
|     register ush scan_end   = *(ushf*)(scan+best_len-1);
 | |
| #else
 | |
|     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
 | |
|     register Byte scan_end1  = scan[best_len-1];
 | |
|     register Byte scan_end   = scan[best_len];
 | |
| #endif
 | |
| 
 | |
|     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
 | |
|      * It is easy to get rid of this optimization if necessary.
 | |
|      */
 | |
|     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
 | |
| 
 | |
|     /* Do not waste too much time if we already have a good match: */
 | |
|     if (s->prev_length >= s->good_match) {
 | |
|         chain_length >>= 2;
 | |
|     }
 | |
|     /* Do not look for matches beyond the end of the input. This is necessary
 | |
|      * to make deflate deterministic.
 | |
|      */
 | |
|     if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
 | |
| 
 | |
|     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
 | |
| 
 | |
|     do {
 | |
|         Assert(cur_match < s->strstart, "no future");
 | |
|         match = s->window + cur_match;
 | |
| 
 | |
|         /* Skip to next match if the match length cannot increase
 | |
|          * or if the match length is less than 2.  Note that the checks below
 | |
|          * for insufficient lookahead only occur occasionally for performance
 | |
|          * reasons.  Therefore uninitialized memory will be accessed, and
 | |
|          * conditional jumps will be made that depend on those values.
 | |
|          * However the length of the match is limited to the lookahead, so
 | |
|          * the output of deflate is not affected by the uninitialized values.
 | |
|          */
 | |
| #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
 | |
|         /* This code assumes sizeof(unsigned short) == 2. Do not use
 | |
|          * UNALIGNED_OK if your compiler uses a different size.
 | |
|          */
 | |
|         if (*(ushf*)(match+best_len-1) != scan_end ||
 | |
|             *(ushf*)match != scan_start) continue;
 | |
| 
 | |
|         /* It is not necessary to compare scan[2] and match[2] since they are
 | |
|          * always equal when the other bytes match, given that the hash keys
 | |
|          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
 | |
|          * strstart+3, +5, ... up to strstart+257. We check for insufficient
 | |
|          * lookahead only every 4th comparison; the 128th check will be made
 | |
|          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
 | |
|          * necessary to put more guard bytes at the end of the window, or
 | |
|          * to check more often for insufficient lookahead.
 | |
|          */
 | |
|         Assert(scan[2] == match[2], "scan[2]?");
 | |
|         scan++, match++;
 | |
|         do {
 | |
|         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
 | |
|                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
 | |
|                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
 | |
|                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
 | |
|                  scan < strend);
 | |
|         /* The funny "do {}" generates better code on most compilers */
 | |
| 
 | |
|         /* Here, scan <= window+strstart+257 */
 | |
|         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
 | |
|         if (*scan == *match) scan++;
 | |
| 
 | |
|         len = (MAX_MATCH - 1) - (int)(strend-scan);
 | |
|         scan = strend - (MAX_MATCH-1);
 | |
| 
 | |
| #else /* UNALIGNED_OK */
 | |
| 
 | |
|         if (match[best_len]   != scan_end  ||
 | |
|             match[best_len-1] != scan_end1 ||
 | |
|             *match            != *scan     ||
 | |
|             *++match          != scan[1])      continue;
 | |
| 
 | |
|         /* The check at best_len-1 can be removed because it will be made
 | |
|          * again later. (This heuristic is not always a win.)
 | |
|          * It is not necessary to compare scan[2] and match[2] since they
 | |
|          * are always equal when the other bytes match, given that
 | |
|          * the hash keys are equal and that HASH_BITS >= 8.
 | |
|          */
 | |
|         scan += 2, match++;
 | |
|         Assert(*scan == *match, "match[2]?");
 | |
| 
 | |
|         /* We check for insufficient lookahead only every 8th comparison;
 | |
|          * the 256th check will be made at strstart+258.
 | |
|          */
 | |
|         do {
 | |
|         } while (*++scan == *++match && *++scan == *++match &&
 | |
|                  *++scan == *++match && *++scan == *++match &&
 | |
|                  *++scan == *++match && *++scan == *++match &&
 | |
|                  *++scan == *++match && *++scan == *++match &&
 | |
|                  scan < strend);
 | |
| 
 | |
|         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
 | |
| 
 | |
|         len = MAX_MATCH - (int)(strend - scan);
 | |
|         scan = strend - MAX_MATCH;
 | |
| 
 | |
| #endif /* UNALIGNED_OK */
 | |
| 
 | |
|         if (len > best_len) {
 | |
|             s->match_start = cur_match;
 | |
|             best_len = len;
 | |
|             if (len >= nice_match) break;
 | |
| #ifdef UNALIGNED_OK
 | |
|             scan_end = *(ushf*)(scan+best_len-1);
 | |
| #else
 | |
|             scan_end1  = scan[best_len-1];
 | |
|             scan_end   = scan[best_len];
 | |
| #endif
 | |
|         }
 | |
|     } while ((cur_match = prev[cur_match & wmask]) > limit
 | |
|              && --chain_length != 0);
 | |
| 
 | |
|     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
 | |
|     return s->lookahead;
 | |
| }
 | |
| #endif /* ASMV */
 | |
| 
 | |
| #else /* FASTEST */
 | |
| 
 | |
| /* ---------------------------------------------------------------------------
 | |
|  * Optimized version for FASTEST only
 | |
|  */
 | |
| local uInt longest_match(s, cur_match)
 | |
|     deflate_state *s;
 | |
|     IPos cur_match;                             /* current match */
 | |
| {
 | |
|     register Bytef *scan = s->window + s->strstart; /* current string */
 | |
|     register Bytef *match;                       /* matched string */
 | |
|     register int len;                           /* length of current match */
 | |
|     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
 | |
| 
 | |
|     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
 | |
|      * It is easy to get rid of this optimization if necessary.
 | |
|      */
 | |
|     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
 | |
| 
 | |
|     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
 | |
| 
 | |
|     Assert(cur_match < s->strstart, "no future");
 | |
| 
 | |
|     match = s->window + cur_match;
 | |
| 
 | |
|     /* Return failure if the match length is less than 2:
 | |
|      */
 | |
|     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
 | |
| 
 | |
|     /* The check at best_len-1 can be removed because it will be made
 | |
|      * again later. (This heuristic is not always a win.)
 | |
|      * It is not necessary to compare scan[2] and match[2] since they
 | |
|      * are always equal when the other bytes match, given that
 | |
|      * the hash keys are equal and that HASH_BITS >= 8.
 | |
|      */
 | |
|     scan += 2, match += 2;
 | |
|     Assert(*scan == *match, "match[2]?");
 | |
| 
 | |
|     /* We check for insufficient lookahead only every 8th comparison;
 | |
|      * the 256th check will be made at strstart+258.
 | |
|      */
 | |
|     do {
 | |
|     } while (*++scan == *++match && *++scan == *++match &&
 | |
|              *++scan == *++match && *++scan == *++match &&
 | |
|              *++scan == *++match && *++scan == *++match &&
 | |
|              *++scan == *++match && *++scan == *++match &&
 | |
|              scan < strend);
 | |
| 
 | |
|     Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
 | |
| 
 | |
|     len = MAX_MATCH - (int)(strend - scan);
 | |
| 
 | |
|     if (len < MIN_MATCH) return MIN_MATCH - 1;
 | |
| 
 | |
|     s->match_start = cur_match;
 | |
|     return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
 | |
| }
 | |
| 
 | |
| #endif /* FASTEST */
 | |
| 
 | |
| #ifdef ZLIB_DEBUG
 | |
| 
 | |
| #define EQUAL 0
 | |
| /* result of memcmp for equal strings */
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Check that the match at match_start is indeed a match.
 | |
|  */
 | |
| local void check_match(s, start, match, length)
 | |
|     deflate_state *s;
 | |
|     IPos start, match;
 | |
|     int length;
 | |
| {
 | |
|     /* check that the match is indeed a match */
 | |
|     if (zmemcmp(s->window + match,
 | |
|                 s->window + start, length) != EQUAL) {
 | |
|         fprintf(stderr, " start %u, match %u, length %d\n",
 | |
|                 start, match, length);
 | |
|         do {
 | |
|             fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
 | |
|         } while (--length != 0);
 | |
|         z_error("invalid match");
 | |
|     }
 | |
|     if (z_verbose > 1) {
 | |
|         fprintf(stderr,"\\[%d,%d]", start-match, length);
 | |
|         do { putc(s->window[start++], stderr); } while (--length != 0);
 | |
|     }
 | |
| }
 | |
| #else
 | |
| #  define check_match(s, start, match, length)
 | |
| #endif /* ZLIB_DEBUG */
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Fill the window when the lookahead becomes insufficient.
 | |
|  * Updates strstart and lookahead.
 | |
|  *
 | |
|  * IN assertion: lookahead < MIN_LOOKAHEAD
 | |
|  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
 | |
|  *    At least one byte has been read, or avail_in == 0; reads are
 | |
|  *    performed for at least two bytes (required for the zip translate_eol
 | |
|  *    option -- not supported here).
 | |
|  */
 | |
| local void fill_window(s)
 | |
|     deflate_state *s;
 | |
| {
 | |
|     unsigned n;
 | |
|     unsigned more;    /* Amount of free space at the end of the window. */
 | |
|     uInt wsize = s->w_size;
 | |
| 
 | |
|     Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
 | |
| 
 | |
|     do {
 | |
|         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
 | |
| 
 | |
|         /* Deal with !@#$% 64K limit: */
 | |
|         if (sizeof(int) <= 2) {
 | |
|             if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
 | |
|                 more = wsize;
 | |
| 
 | |
|             } else if (more == (unsigned)(-1)) {
 | |
|                 /* Very unlikely, but possible on 16 bit machine if
 | |
|                  * strstart == 0 && lookahead == 1 (input done a byte at time)
 | |
|                  */
 | |
|                 more--;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* If the window is almost full and there is insufficient lookahead,
 | |
|          * move the upper half to the lower one to make room in the upper half.
 | |
|          */
 | |
|         if (s->strstart >= wsize+MAX_DIST(s)) {
 | |
| 
 | |
|             zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
 | |
|             s->match_start -= wsize;
 | |
|             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
 | |
|             s->block_start -= (long) wsize;
 | |
|             slide_hash(s);
 | |
|             more += wsize;
 | |
|         }
 | |
|         if (s->strm->avail_in == 0) break;
 | |
| 
 | |
|         /* If there was no sliding:
 | |
|          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
 | |
|          *    more == window_size - lookahead - strstart
 | |
|          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
 | |
|          * => more >= window_size - 2*WSIZE + 2
 | |
|          * In the BIG_MEM or MMAP case (not yet supported),
 | |
|          *   window_size == input_size + MIN_LOOKAHEAD  &&
 | |
|          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
 | |
|          * Otherwise, window_size == 2*WSIZE so more >= 2.
 | |
|          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
 | |
|          */
 | |
|         Assert(more >= 2, "more < 2");
 | |
| 
 | |
|         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
 | |
|         s->lookahead += n;
 | |
| 
 | |
|         /* Initialize the hash value now that we have some input: */
 | |
|         if (s->lookahead + s->insert >= MIN_MATCH) {
 | |
|             uInt str = s->strstart - s->insert;
 | |
|             s->ins_h = s->window[str];
 | |
|             UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
 | |
| #if MIN_MATCH != 3
 | |
|             Call UPDATE_HASH() MIN_MATCH-3 more times
 | |
| #endif
 | |
|             while (s->insert) {
 | |
|                 UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
 | |
| #ifndef FASTEST
 | |
|                 s->prev[str & s->w_mask] = s->head[s->ins_h];
 | |
| #endif
 | |
|                 s->head[s->ins_h] = (Pos)str;
 | |
|                 str++;
 | |
|                 s->insert--;
 | |
|                 if (s->lookahead + s->insert < MIN_MATCH)
 | |
|                     break;
 | |
|             }
 | |
|         }
 | |
|         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
 | |
|          * but this is not important since only literal bytes will be emitted.
 | |
|          */
 | |
| 
 | |
|     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
 | |
| 
 | |
|     /* If the WIN_INIT bytes after the end of the current data have never been
 | |
|      * written, then zero those bytes in order to avoid memory check reports of
 | |
|      * the use of uninitialized (or uninitialised as Julian writes) bytes by
 | |
|      * the longest match routines.  Update the high water mark for the next
 | |
|      * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
 | |
|      * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
 | |
|      */
 | |
|     if (s->high_water < s->window_size) {
 | |
|         ulg curr = s->strstart + (ulg)(s->lookahead);
 | |
|         ulg init;
 | |
| 
 | |
|         if (s->high_water < curr) {
 | |
|             /* Previous high water mark below current data -- zero WIN_INIT
 | |
|              * bytes or up to end of window, whichever is less.
 | |
|              */
 | |
|             init = s->window_size - curr;
 | |
|             if (init > WIN_INIT)
 | |
|                 init = WIN_INIT;
 | |
|             zmemzero(s->window + curr, (unsigned)init);
 | |
|             s->high_water = curr + init;
 | |
|         }
 | |
|         else if (s->high_water < (ulg)curr + WIN_INIT) {
 | |
|             /* High water mark at or above current data, but below current data
 | |
|              * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
 | |
|              * to end of window, whichever is less.
 | |
|              */
 | |
|             init = (ulg)curr + WIN_INIT - s->high_water;
 | |
|             if (init > s->window_size - s->high_water)
 | |
|                 init = s->window_size - s->high_water;
 | |
|             zmemzero(s->window + s->high_water, (unsigned)init);
 | |
|             s->high_water += init;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
 | |
|            "not enough room for search");
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Flush the current block, with given end-of-file flag.
 | |
|  * IN assertion: strstart is set to the end of the current match.
 | |
|  */
 | |
| #define FLUSH_BLOCK_ONLY(s, last) { \
 | |
|    _tr_flush_block(s, (s->block_start >= 0L ? \
 | |
|                    (charf *)&s->window[(unsigned)s->block_start] : \
 | |
|                    (charf *)Z_NULL), \
 | |
|                 (ulg)((long)s->strstart - s->block_start), \
 | |
|                 (last)); \
 | |
|    s->block_start = s->strstart; \
 | |
|    flush_pending(s->strm); \
 | |
|    Tracev((stderr,"[FLUSH]")); \
 | |
| }
 | |
| 
 | |
| /* Same but force premature exit if necessary. */
 | |
| #define FLUSH_BLOCK(s, last) { \
 | |
|    FLUSH_BLOCK_ONLY(s, last); \
 | |
|    if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
 | |
| }
 | |
| 
 | |
| /* Maximum stored block length in deflate format (not including header). */
 | |
| #define MAX_STORED 65535
 | |
| 
 | |
| /* Minimum of a and b. */
 | |
| #define MIN(a, b) ((a) > (b) ? (b) : (a))
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Copy without compression as much as possible from the input stream, return
 | |
|  * the current block state.
 | |
|  *
 | |
|  * In case deflateParams() is used to later switch to a non-zero compression
 | |
|  * level, s->matches (otherwise unused when storing) keeps track of the number
 | |
|  * of hash table slides to perform. If s->matches is 1, then one hash table
 | |
|  * slide will be done when switching. If s->matches is 2, the maximum value
 | |
|  * allowed here, then the hash table will be cleared, since two or more slides
 | |
|  * is the same as a clear.
 | |
|  *
 | |
|  * deflate_stored() is written to minimize the number of times an input byte is
 | |
|  * copied. It is most efficient with large input and output buffers, which
 | |
|  * maximizes the opportunites to have a single copy from next_in to next_out.
 | |
|  */
 | |
| local block_state deflate_stored(s, flush)
 | |
|     deflate_state *s;
 | |
|     int flush;
 | |
| {
 | |
|     /* Smallest worthy block size when not flushing or finishing. By default
 | |
|      * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
 | |
|      * large input and output buffers, the stored block size will be larger.
 | |
|      */
 | |
|     unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
 | |
| 
 | |
|     /* Copy as many min_block or larger stored blocks directly to next_out as
 | |
|      * possible. If flushing, copy the remaining available input to next_out as
 | |
|      * stored blocks, if there is enough space.
 | |
|      */
 | |
|     unsigned len, left, have, last = 0;
 | |
|     unsigned used = s->strm->avail_in;
 | |
|     do {
 | |
|         /* Set len to the maximum size block that we can copy directly with the
 | |
|          * available input data and output space. Set left to how much of that
 | |
|          * would be copied from what's left in the window.
 | |
|          */
 | |
|         len = MAX_STORED;       /* maximum deflate stored block length */
 | |
|         have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
 | |
|         if (s->strm->avail_out < have)          /* need room for header */
 | |
|             break;
 | |
|             /* maximum stored block length that will fit in avail_out: */
 | |
|         have = s->strm->avail_out - have;
 | |
|         left = s->strstart - s->block_start;    /* bytes left in window */
 | |
|         if (len > (ulg)left + s->strm->avail_in)
 | |
|             len = left + s->strm->avail_in;     /* limit len to the input */
 | |
|         if (len > have)
 | |
|             len = have;                         /* limit len to the output */
 | |
| 
 | |
|         /* If the stored block would be less than min_block in length, or if
 | |
|          * unable to copy all of the available input when flushing, then try
 | |
|          * copying to the window and the pending buffer instead. Also don't
 | |
|          * write an empty block when flushing -- deflate() does that.
 | |
|          */
 | |
|         if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
 | |
|                                 flush == Z_NO_FLUSH ||
 | |
|                                 len != left + s->strm->avail_in))
 | |
|             break;
 | |
| 
 | |
|         /* Make a dummy stored block in pending to get the header bytes,
 | |
|          * including any pending bits. This also updates the debugging counts.
 | |
|          */
 | |
|         last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
 | |
|         _tr_stored_block(s, (char *)0, 0L, last);
 | |
| 
 | |
|         /* Replace the lengths in the dummy stored block with len. */
 | |
|         s->pending_buf[s->pending - 4] = len;
 | |
|         s->pending_buf[s->pending - 3] = len >> 8;
 | |
|         s->pending_buf[s->pending - 2] = ~len;
 | |
|         s->pending_buf[s->pending - 1] = ~len >> 8;
 | |
| 
 | |
|         /* Write the stored block header bytes. */
 | |
|         flush_pending(s->strm);
 | |
| 
 | |
| #ifdef ZLIB_DEBUG
 | |
|         /* Update debugging counts for the data about to be copied. */
 | |
|         s->compressed_len += len << 3;
 | |
|         s->bits_sent += len << 3;
 | |
| #endif
 | |
| 
 | |
|         /* Copy uncompressed bytes from the window to next_out. */
 | |
|         if (left) {
 | |
|             if (left > len)
 | |
|                 left = len;
 | |
|             zmemcpy(s->strm->next_out, s->window + s->block_start, left);
 | |
|             s->strm->next_out += left;
 | |
|             s->strm->avail_out -= left;
 | |
|             s->strm->total_out += left;
 | |
|             s->block_start += left;
 | |
|             len -= left;
 | |
|         }
 | |
| 
 | |
|         /* Copy uncompressed bytes directly from next_in to next_out, updating
 | |
|          * the check value.
 | |
|          */
 | |
|         if (len) {
 | |
|             read_buf(s->strm, s->strm->next_out, len);
 | |
|             s->strm->next_out += len;
 | |
|             s->strm->avail_out -= len;
 | |
|             s->strm->total_out += len;
 | |
|         }
 | |
|     } while (last == 0);
 | |
| 
 | |
|     /* Update the sliding window with the last s->w_size bytes of the copied
 | |
|      * data, or append all of the copied data to the existing window if less
 | |
|      * than s->w_size bytes were copied. Also update the number of bytes to
 | |
|      * insert in the hash tables, in the event that deflateParams() switches to
 | |
|      * a non-zero compression level.
 | |
|      */
 | |
|     used -= s->strm->avail_in;      /* number of input bytes directly copied */
 | |
|     if (used) {
 | |
|         /* If any input was used, then no unused input remains in the window,
 | |
|          * therefore s->block_start == s->strstart.
 | |
|          */
 | |
|         if (used >= s->w_size) {    /* supplant the previous history */
 | |
|             s->matches = 2;         /* clear hash */
 | |
|             zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
 | |
|             s->strstart = s->w_size;
 | |
|         }
 | |
|         else {
 | |
|             if (s->window_size - s->strstart <= used) {
 | |
|                 /* Slide the window down. */
 | |
|                 s->strstart -= s->w_size;
 | |
|                 zmemcpy(s->window, s->window + s->w_size, s->strstart);
 | |
|                 if (s->matches < 2)
 | |
|                     s->matches++;   /* add a pending slide_hash() */
 | |
|             }
 | |
|             zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
 | |
|             s->strstart += used;
 | |
|         }
 | |
|         s->block_start = s->strstart;
 | |
|         s->insert += MIN(used, s->w_size - s->insert);
 | |
|     }
 | |
|     if (s->high_water < s->strstart)
 | |
|         s->high_water = s->strstart;
 | |
| 
 | |
|     /* If the last block was written to next_out, then done. */
 | |
|     if (last)
 | |
|         return finish_done;
 | |
| 
 | |
|     /* If flushing and all input has been consumed, then done. */
 | |
|     if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
 | |
|         s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
 | |
|         return block_done;
 | |
| 
 | |
|     /* Fill the window with any remaining input. */
 | |
|     have = s->window_size - s->strstart - 1;
 | |
|     if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
 | |
|         /* Slide the window down. */
 | |
|         s->block_start -= s->w_size;
 | |
|         s->strstart -= s->w_size;
 | |
|         zmemcpy(s->window, s->window + s->w_size, s->strstart);
 | |
|         if (s->matches < 2)
 | |
|             s->matches++;           /* add a pending slide_hash() */
 | |
|         have += s->w_size;          /* more space now */
 | |
|     }
 | |
|     if (have > s->strm->avail_in)
 | |
|         have = s->strm->avail_in;
 | |
|     if (have) {
 | |
|         read_buf(s->strm, s->window + s->strstart, have);
 | |
|         s->strstart += have;
 | |
|     }
 | |
|     if (s->high_water < s->strstart)
 | |
|         s->high_water = s->strstart;
 | |
| 
 | |
|     /* There was not enough avail_out to write a complete worthy or flushed
 | |
|      * stored block to next_out. Write a stored block to pending instead, if we
 | |
|      * have enough input for a worthy block, or if flushing and there is enough
 | |
|      * room for the remaining input as a stored block in the pending buffer.
 | |
|      */
 | |
|     have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
 | |
|         /* maximum stored block length that will fit in pending: */
 | |
|     have = MIN(s->pending_buf_size - have, MAX_STORED);
 | |
|     min_block = MIN(have, s->w_size);
 | |
|     left = s->strstart - s->block_start;
 | |
|     if (left >= min_block ||
 | |
|         ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
 | |
|          s->strm->avail_in == 0 && left <= have)) {
 | |
|         len = MIN(left, have);
 | |
|         last = flush == Z_FINISH && s->strm->avail_in == 0 &&
 | |
|                len == left ? 1 : 0;
 | |
|         _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
 | |
|         s->block_start += len;
 | |
|         flush_pending(s->strm);
 | |
|     }
 | |
| 
 | |
|     /* We've done all we can with the available input and output. */
 | |
|     return last ? finish_started : need_more;
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * Compress as much as possible from the input stream, return the current
 | |
|  * block state.
 | |
|  * This function does not perform lazy evaluation of matches and inserts
 | |
|  * new strings in the dictionary only for unmatched strings or for short
 | |
|  * matches. It is used only for the fast compression options.
 | |
|  */
 | |
| local block_state deflate_fast(s, flush)
 | |
|     deflate_state *s;
 | |
|     int flush;
 | |
| {
 | |
|     IPos hash_head;       /* head of the hash chain */
 | |
|     int bflush;           /* set if current block must be flushed */
 | |
| 
 | |
|     for (;;) {
 | |
|         /* Make sure that we always have enough lookahead, except
 | |
|          * at the end of the input file. We need MAX_MATCH bytes
 | |
|          * for the next match, plus MIN_MATCH bytes to insert the
 | |
|          * string following the next match.
 | |
|          */
 | |
|         if (s->lookahead < MIN_LOOKAHEAD) {
 | |
|             fill_window(s);
 | |
|             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
 | |
|                 return need_more;
 | |
|             }
 | |
|             if (s->lookahead == 0) break; /* flush the current block */
 | |
|         }
 | |
| 
 | |
|         /* Insert the string window[strstart .. strstart+2] in the
 | |
|          * dictionary, and set hash_head to the head of the hash chain:
 | |
|          */
 | |
|         hash_head = NIL;
 | |
|         if (s->lookahead >= MIN_MATCH) {
 | |
|             INSERT_STRING(s, s->strstart, hash_head);
 | |
|         }
 | |
| 
 | |
|         /* Find the longest match, discarding those <= prev_length.
 | |
|          * At this point we have always match_length < MIN_MATCH
 | |
|          */
 | |
|         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
 | |
|             /* To simplify the code, we prevent matches with the string
 | |
|              * of window index 0 (in particular we have to avoid a match
 | |
|              * of the string with itself at the start of the input file).
 | |
|              */
 | |
|             s->match_length = longest_match (s, hash_head);
 | |
|             /* longest_match() sets match_start */
 | |
|         }
 | |
|         if (s->match_length >= MIN_MATCH) {
 | |
|             check_match(s, s->strstart, s->match_start, s->match_length);
 | |
| 
 | |
|             _tr_tally_dist(s, s->strstart - s->match_start,
 | |
|                            s->match_length - MIN_MATCH, bflush);
 | |
| 
 | |
|             s->lookahead -= s->match_length;
 | |
| 
 | |
|             /* Insert new strings in the hash table only if the match length
 | |
|              * is not too large. This saves time but degrades compression.
 | |
|              */
 | |
| #ifndef FASTEST
 | |
|             if (s->match_length <= s->max_insert_length &&
 | |
|                 s->lookahead >= MIN_MATCH) {
 | |
|                 s->match_length--; /* string at strstart already in table */
 | |
|                 do {
 | |
|                     s->strstart++;
 | |
|                     INSERT_STRING(s, s->strstart, hash_head);
 | |
|                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
 | |
|                      * always MIN_MATCH bytes ahead.
 | |
|                      */
 | |
|                 } while (--s->match_length != 0);
 | |
|                 s->strstart++;
 | |
|             } else
 | |
| #endif
 | |
|             {
 | |
|                 s->strstart += s->match_length;
 | |
|                 s->match_length = 0;
 | |
|                 s->ins_h = s->window[s->strstart];
 | |
|                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
 | |
| #if MIN_MATCH != 3
 | |
|                 Call UPDATE_HASH() MIN_MATCH-3 more times
 | |
| #endif
 | |
|                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
 | |
|                  * matter since it will be recomputed at next deflate call.
 | |
|                  */
 | |
|             }
 | |
|         } else {
 | |
|             /* No match, output a literal byte */
 | |
|             Tracevv((stderr,"%c", s->window[s->strstart]));
 | |
|             _tr_tally_lit (s, s->window[s->strstart], bflush);
 | |
|             s->lookahead--;
 | |
|             s->strstart++;
 | |
|         }
 | |
|         if (bflush) FLUSH_BLOCK(s, 0);
 | |
|     }
 | |
|     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
 | |
|     if (flush == Z_FINISH) {
 | |
|         FLUSH_BLOCK(s, 1);
 | |
|         return finish_done;
 | |
|     }
 | |
|     if (s->last_lit)
 | |
|         FLUSH_BLOCK(s, 0);
 | |
|     return block_done;
 | |
| }
 | |
| 
 | |
| #ifndef FASTEST
 | |
| /* ===========================================================================
 | |
|  * Same as above, but achieves better compression. We use a lazy
 | |
|  * evaluation for matches: a match is finally adopted only if there is
 | |
|  * no better match at the next window position.
 | |
|  */
 | |
| local block_state deflate_slow(s, flush)
 | |
|     deflate_state *s;
 | |
|     int flush;
 | |
| {
 | |
|     IPos hash_head;          /* head of hash chain */
 | |
|     int bflush;              /* set if current block must be flushed */
 | |
| 
 | |
|     /* Process the input block. */
 | |
|     for (;;) {
 | |
|         /* Make sure that we always have enough lookahead, except
 | |
|          * at the end of the input file. We need MAX_MATCH bytes
 | |
|          * for the next match, plus MIN_MATCH bytes to insert the
 | |
|          * string following the next match.
 | |
|          */
 | |
|         if (s->lookahead < MIN_LOOKAHEAD) {
 | |
|             fill_window(s);
 | |
|             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
 | |
|                 return need_more;
 | |
|             }
 | |
|             if (s->lookahead == 0) break; /* flush the current block */
 | |
|         }
 | |
| 
 | |
|         /* Insert the string window[strstart .. strstart+2] in the
 | |
|          * dictionary, and set hash_head to the head of the hash chain:
 | |
|          */
 | |
|         hash_head = NIL;
 | |
|         if (s->lookahead >= MIN_MATCH) {
 | |
|             INSERT_STRING(s, s->strstart, hash_head);
 | |
|         }
 | |
| 
 | |
|         /* Find the longest match, discarding those <= prev_length.
 | |
|          */
 | |
|         s->prev_length = s->match_length, s->prev_match = s->match_start;
 | |
|         s->match_length = MIN_MATCH-1;
 | |
| 
 | |
|         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
 | |
|             s->strstart - hash_head <= MAX_DIST(s)) {
 | |
|             /* To simplify the code, we prevent matches with the string
 | |
|              * of window index 0 (in particular we have to avoid a match
 | |
|              * of the string with itself at the start of the input file).
 | |
|              */
 | |
|             s->match_length = longest_match (s, hash_head);
 | |
|             /* longest_match() sets match_start */
 | |
| 
 | |
|             if (s->match_length <= 5 && (s->strategy == Z_FILTERED
 | |
| #if TOO_FAR <= 32767
 | |
|                 || (s->match_length == MIN_MATCH &&
 | |
|                     s->strstart - s->match_start > TOO_FAR)
 | |
| #endif
 | |
|                 )) {
 | |
| 
 | |
|                 /* If prev_match is also MIN_MATCH, match_start is garbage
 | |
|                  * but we will ignore the current match anyway.
 | |
|                  */
 | |
|                 s->match_length = MIN_MATCH-1;
 | |
|             }
 | |
|         }
 | |
|         /* If there was a match at the previous step and the current
 | |
|          * match is not better, output the previous match:
 | |
|          */
 | |
|         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
 | |
|             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
 | |
|             /* Do not insert strings in hash table beyond this. */
 | |
| 
 | |
|             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
 | |
| 
 | |
|             _tr_tally_dist(s, s->strstart -1 - s->prev_match,
 | |
|                            s->prev_length - MIN_MATCH, bflush);
 | |
| 
 | |
|             /* Insert in hash table all strings up to the end of the match.
 | |
|              * strstart-1 and strstart are already inserted. If there is not
 | |
|              * enough lookahead, the last two strings are not inserted in
 | |
|              * the hash table.
 | |
|              */
 | |
|             s->lookahead -= s->prev_length-1;
 | |
|             s->prev_length -= 2;
 | |
|             do {
 | |
|                 if (++s->strstart <= max_insert) {
 | |
|                     INSERT_STRING(s, s->strstart, hash_head);
 | |
|                 }
 | |
|             } while (--s->prev_length != 0);
 | |
|             s->match_available = 0;
 | |
|             s->match_length = MIN_MATCH-1;
 | |
|             s->strstart++;
 | |
| 
 | |
|             if (bflush) FLUSH_BLOCK(s, 0);
 | |
| 
 | |
|         } else if (s->match_available) {
 | |
|             /* If there was no match at the previous position, output a
 | |
|              * single literal. If there was a match but the current match
 | |
|              * is longer, truncate the previous match to a single literal.
 | |
|              */
 | |
|             Tracevv((stderr,"%c", s->window[s->strstart-1]));
 | |
|             _tr_tally_lit(s, s->window[s->strstart-1], bflush);
 | |
|             if (bflush) {
 | |
|                 FLUSH_BLOCK_ONLY(s, 0);
 | |
|             }
 | |
|             s->strstart++;
 | |
|             s->lookahead--;
 | |
|             if (s->strm->avail_out == 0) return need_more;
 | |
|         } else {
 | |
|             /* There is no previous match to compare with, wait for
 | |
|              * the next step to decide.
 | |
|              */
 | |
|             s->match_available = 1;
 | |
|             s->strstart++;
 | |
|             s->lookahead--;
 | |
|         }
 | |
|     }
 | |
|     Assert (flush != Z_NO_FLUSH, "no flush?");
 | |
|     if (s->match_available) {
 | |
|         Tracevv((stderr,"%c", s->window[s->strstart-1]));
 | |
|         _tr_tally_lit(s, s->window[s->strstart-1], bflush);
 | |
|         s->match_available = 0;
 | |
|     }
 | |
|     s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
 | |
|     if (flush == Z_FINISH) {
 | |
|         FLUSH_BLOCK(s, 1);
 | |
|         return finish_done;
 | |
|     }
 | |
|     if (s->last_lit)
 | |
|         FLUSH_BLOCK(s, 0);
 | |
|     return block_done;
 | |
| }
 | |
| #endif /* FASTEST */
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * For Z_RLE, simply look for runs of bytes, generate matches only of distance
 | |
|  * one.  Do not maintain a hash table.  (It will be regenerated if this run of
 | |
|  * deflate switches away from Z_RLE.)
 | |
|  */
 | |
| local block_state deflate_rle(s, flush)
 | |
|     deflate_state *s;
 | |
|     int flush;
 | |
| {
 | |
|     int bflush;             /* set if current block must be flushed */
 | |
|     uInt prev;              /* byte at distance one to match */
 | |
|     Bytef *scan, *strend;   /* scan goes up to strend for length of run */
 | |
| 
 | |
|     for (;;) {
 | |
|         /* Make sure that we always have enough lookahead, except
 | |
|          * at the end of the input file. We need MAX_MATCH bytes
 | |
|          * for the longest run, plus one for the unrolled loop.
 | |
|          */
 | |
|         if (s->lookahead <= MAX_MATCH) {
 | |
|             fill_window(s);
 | |
|             if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
 | |
|                 return need_more;
 | |
|             }
 | |
|             if (s->lookahead == 0) break; /* flush the current block */
 | |
|         }
 | |
| 
 | |
|         /* See how many times the previous byte repeats */
 | |
|         s->match_length = 0;
 | |
|         if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
 | |
|             scan = s->window + s->strstart - 1;
 | |
|             prev = *scan;
 | |
|             if (prev == *++scan && prev == *++scan && prev == *++scan) {
 | |
|                 strend = s->window + s->strstart + MAX_MATCH;
 | |
|                 do {
 | |
|                 } while (prev == *++scan && prev == *++scan &&
 | |
|                          prev == *++scan && prev == *++scan &&
 | |
|                          prev == *++scan && prev == *++scan &&
 | |
|                          prev == *++scan && prev == *++scan &&
 | |
|                          scan < strend);
 | |
|                 s->match_length = MAX_MATCH - (uInt)(strend - scan);
 | |
|                 if (s->match_length > s->lookahead)
 | |
|                     s->match_length = s->lookahead;
 | |
|             }
 | |
|             Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
 | |
|         }
 | |
| 
 | |
|         /* Emit match if have run of MIN_MATCH or longer, else emit literal */
 | |
|         if (s->match_length >= MIN_MATCH) {
 | |
|             check_match(s, s->strstart, s->strstart - 1, s->match_length);
 | |
| 
 | |
|             _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
 | |
| 
 | |
|             s->lookahead -= s->match_length;
 | |
|             s->strstart += s->match_length;
 | |
|             s->match_length = 0;
 | |
|         } else {
 | |
|             /* No match, output a literal byte */
 | |
|             Tracevv((stderr,"%c", s->window[s->strstart]));
 | |
|             _tr_tally_lit (s, s->window[s->strstart], bflush);
 | |
|             s->lookahead--;
 | |
|             s->strstart++;
 | |
|         }
 | |
|         if (bflush) FLUSH_BLOCK(s, 0);
 | |
|     }
 | |
|     s->insert = 0;
 | |
|     if (flush == Z_FINISH) {
 | |
|         FLUSH_BLOCK(s, 1);
 | |
|         return finish_done;
 | |
|     }
 | |
|     if (s->last_lit)
 | |
|         FLUSH_BLOCK(s, 0);
 | |
|     return block_done;
 | |
| }
 | |
| 
 | |
| /* ===========================================================================
 | |
|  * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
 | |
|  * (It will be regenerated if this run of deflate switches away from Huffman.)
 | |
|  */
 | |
| local block_state deflate_huff(s, flush)
 | |
|     deflate_state *s;
 | |
|     int flush;
 | |
| {
 | |
|     int bflush;             /* set if current block must be flushed */
 | |
| 
 | |
|     for (;;) {
 | |
|         /* Make sure that we have a literal to write. */
 | |
|         if (s->lookahead == 0) {
 | |
|             fill_window(s);
 | |
|             if (s->lookahead == 0) {
 | |
|                 if (flush == Z_NO_FLUSH)
 | |
|                     return need_more;
 | |
|                 break;      /* flush the current block */
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* Output a literal byte */
 | |
|         s->match_length = 0;
 | |
|         Tracevv((stderr,"%c", s->window[s->strstart]));
 | |
|         _tr_tally_lit (s, s->window[s->strstart], bflush);
 | |
|         s->lookahead--;
 | |
|         s->strstart++;
 | |
|         if (bflush) FLUSH_BLOCK(s, 0);
 | |
|     }
 | |
|     s->insert = 0;
 | |
|     if (flush == Z_FINISH) {
 | |
|         FLUSH_BLOCK(s, 1);
 | |
|         return finish_done;
 | |
|     }
 | |
|     if (s->last_lit)
 | |
|         FLUSH_BLOCK(s, 0);
 | |
|     return block_done;
 | |
| }
 | 
