443 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			443 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* crc32.c -- compute the CRC-32 of a data stream
 | |
|  * Copyright (C) 1995-2006, 2010, 2011, 2012, 2016 Mark Adler
 | |
|  * For conditions of distribution and use, see copyright notice in zlib.h
 | |
|  *
 | |
|  * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
 | |
|  * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
 | |
|  * tables for updating the shift register in one step with three exclusive-ors
 | |
|  * instead of four steps with four exclusive-ors.  This results in about a
 | |
|  * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
 | |
|  */
 | |
| 
 | |
| /* @(#) $Id$ */
 | |
| 
 | |
| /*
 | |
|   Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
 | |
|   protection on the static variables used to control the first-use generation
 | |
|   of the crc tables.  Therefore, if you #define DYNAMIC_CRC_TABLE, you should
 | |
|   first call get_crc_table() to initialize the tables before allowing more than
 | |
|   one thread to use crc32().
 | |
| 
 | |
|   DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h.
 | |
|  */
 | |
| 
 | |
| #ifdef MAKECRCH
 | |
| #  include <stdio.h>
 | |
| #  ifndef DYNAMIC_CRC_TABLE
 | |
| #    define DYNAMIC_CRC_TABLE
 | |
| #  endif /* !DYNAMIC_CRC_TABLE */
 | |
| #endif /* MAKECRCH */
 | |
| 
 | |
| #include "zutil.h"      /* for STDC and FAR definitions */
 | |
| 
 | |
| /* Definitions for doing the crc four data bytes at a time. */
 | |
| #if !defined(NOBYFOUR) && defined(Z_U4)
 | |
| #  define BYFOUR
 | |
| #endif
 | |
| #ifdef BYFOUR
 | |
|    local unsigned long crc32_little OF((unsigned long,
 | |
|                         const unsigned char FAR *, z_size_t));
 | |
|    local unsigned long crc32_big OF((unsigned long,
 | |
|                         const unsigned char FAR *, z_size_t));
 | |
| #  define TBLS 8
 | |
| #else
 | |
| #  define TBLS 1
 | |
| #endif /* BYFOUR */
 | |
| 
 | |
| /* Local functions for crc concatenation */
 | |
| local unsigned long gf2_matrix_times OF((unsigned long *mat,
 | |
|                                          unsigned long vec));
 | |
| local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat));
 | |
| local uLong crc32_combine_ OF((uLong crc1, uLong crc2, z_off64_t len2));
 | |
| 
 | |
| 
 | |
| #ifdef DYNAMIC_CRC_TABLE
 | |
| 
 | |
| local volatile int crc_table_empty = 1;
 | |
| local z_crc_t FAR crc_table[TBLS][256];
 | |
| local void make_crc_table OF((void));
 | |
| #ifdef MAKECRCH
 | |
|    local void write_table OF((FILE *, const z_crc_t FAR *));
 | |
| #endif /* MAKECRCH */
 | |
| /*
 | |
|   Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
 | |
|   x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
 | |
| 
 | |
|   Polynomials over GF(2) are represented in binary, one bit per coefficient,
 | |
|   with the lowest powers in the most significant bit.  Then adding polynomials
 | |
|   is just exclusive-or, and multiplying a polynomial by x is a right shift by
 | |
|   one.  If we call the above polynomial p, and represent a byte as the
 | |
|   polynomial q, also with the lowest power in the most significant bit (so the
 | |
|   byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
 | |
|   where a mod b means the remainder after dividing a by b.
 | |
| 
 | |
|   This calculation is done using the shift-register method of multiplying and
 | |
|   taking the remainder.  The register is initialized to zero, and for each
 | |
|   incoming bit, x^32 is added mod p to the register if the bit is a one (where
 | |
|   x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
 | |
|   x (which is shifting right by one and adding x^32 mod p if the bit shifted
 | |
|   out is a one).  We start with the highest power (least significant bit) of
 | |
|   q and repeat for all eight bits of q.
 | |
| 
 | |
|   The first table is simply the CRC of all possible eight bit values.  This is
 | |
|   all the information needed to generate CRCs on data a byte at a time for all
 | |
|   combinations of CRC register values and incoming bytes.  The remaining tables
 | |
|   allow for word-at-a-time CRC calculation for both big-endian and little-
 | |
|   endian machines, where a word is four bytes.
 | |
| */
 | |
| local void make_crc_table()
 | |
| {
 | |
|     z_crc_t c;
 | |
|     int n, k;
 | |
|     z_crc_t poly;                       /* polynomial exclusive-or pattern */
 | |
|     /* terms of polynomial defining this crc (except x^32): */
 | |
|     static volatile int first = 1;      /* flag to limit concurrent making */
 | |
|     static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
 | |
| 
 | |
|     /* See if another task is already doing this (not thread-safe, but better
 | |
|        than nothing -- significantly reduces duration of vulnerability in
 | |
|        case the advice about DYNAMIC_CRC_TABLE is ignored) */
 | |
|     if (first) {
 | |
|         first = 0;
 | |
| 
 | |
|         /* make exclusive-or pattern from polynomial (0xedb88320UL) */
 | |
|         poly = 0;
 | |
|         for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
 | |
|             poly |= (z_crc_t)1 << (31 - p[n]);
 | |
| 
 | |
|         /* generate a crc for every 8-bit value */
 | |
|         for (n = 0; n < 256; n++) {
 | |
|             c = (z_crc_t)n;
 | |
|             for (k = 0; k < 8; k++)
 | |
|                 c = c & 1 ? poly ^ (c >> 1) : c >> 1;
 | |
|             crc_table[0][n] = c;
 | |
|         }
 | |
| 
 | |
| #ifdef BYFOUR
 | |
|         /* generate crc for each value followed by one, two, and three zeros,
 | |
|            and then the byte reversal of those as well as the first table */
 | |
|         for (n = 0; n < 256; n++) {
 | |
|             c = crc_table[0][n];
 | |
|             crc_table[4][n] = ZSWAP32(c);
 | |
|             for (k = 1; k < 4; k++) {
 | |
|                 c = crc_table[0][c & 0xff] ^ (c >> 8);
 | |
|                 crc_table[k][n] = c;
 | |
|                 crc_table[k + 4][n] = ZSWAP32(c);
 | |
|             }
 | |
|         }
 | |
| #endif /* BYFOUR */
 | |
| 
 | |
|         crc_table_empty = 0;
 | |
|     }
 | |
|     else {      /* not first */
 | |
|         /* wait for the other guy to finish (not efficient, but rare) */
 | |
|         while (crc_table_empty)
 | |
|             ;
 | |
|     }
 | |
| 
 | |
| #ifdef MAKECRCH
 | |
|     /* write out CRC tables to crc32.h */
 | |
|     {
 | |
|         FILE *out;
 | |
| 
 | |
|         out = fopen("crc32.h", "w");
 | |
|         if (out == NULL) return;
 | |
|         fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
 | |
|         fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
 | |
|         fprintf(out, "local const z_crc_t FAR ");
 | |
|         fprintf(out, "crc_table[TBLS][256] =\n{\n  {\n");
 | |
|         write_table(out, crc_table[0]);
 | |
| #  ifdef BYFOUR
 | |
|         fprintf(out, "#ifdef BYFOUR\n");
 | |
|         for (k = 1; k < 8; k++) {
 | |
|             fprintf(out, "  },\n  {\n");
 | |
|             write_table(out, crc_table[k]);
 | |
|         }
 | |
|         fprintf(out, "#endif\n");
 | |
| #  endif /* BYFOUR */
 | |
|         fprintf(out, "  }\n};\n");
 | |
|         fclose(out);
 | |
|     }
 | |
| #endif /* MAKECRCH */
 | |
| }
 | |
| 
 | |
| #ifdef MAKECRCH
 | |
| local void write_table(out, table)
 | |
|     FILE *out;
 | |
|     const z_crc_t FAR *table;
 | |
| {
 | |
|     int n;
 | |
| 
 | |
|     for (n = 0; n < 256; n++)
 | |
|         fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : "    ",
 | |
|                 (unsigned long)(table[n]),
 | |
|                 n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
 | |
| }
 | |
| #endif /* MAKECRCH */
 | |
| 
 | |
| #else /* !DYNAMIC_CRC_TABLE */
 | |
| /* ========================================================================
 | |
|  * Tables of CRC-32s of all single-byte values, made by make_crc_table().
 | |
|  */
 | |
| #include "crc32.h"
 | |
| #endif /* DYNAMIC_CRC_TABLE */
 | |
| 
 | |
| /* =========================================================================
 | |
|  * This function can be used by asm versions of crc32()
 | |
|  */
 | |
| const z_crc_t FAR * ZEXPORT get_crc_table()
 | |
| {
 | |
| #ifdef DYNAMIC_CRC_TABLE
 | |
|     if (crc_table_empty)
 | |
|         make_crc_table();
 | |
| #endif /* DYNAMIC_CRC_TABLE */
 | |
|     return (const z_crc_t FAR *)crc_table;
 | |
| }
 | |
| 
 | |
| /* ========================================================================= */
 | |
| #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
 | |
| #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
 | |
| 
 | |
| /* ========================================================================= */
 | |
| unsigned long ZEXPORT crc32_z(crc, buf, len)
 | |
|     unsigned long crc;
 | |
|     const unsigned char FAR *buf;
 | |
|     z_size_t len;
 | |
| {
 | |
|     if (buf == Z_NULL) return 0UL;
 | |
| 
 | |
| #ifdef DYNAMIC_CRC_TABLE
 | |
|     if (crc_table_empty)
 | |
|         make_crc_table();
 | |
| #endif /* DYNAMIC_CRC_TABLE */
 | |
| 
 | |
| #ifdef BYFOUR
 | |
|     if (sizeof(void *) == sizeof(ptrdiff_t)) {
 | |
|         z_crc_t endian;
 | |
| 
 | |
|         endian = 1;
 | |
|         if (*((unsigned char *)(&endian)))
 | |
|             return crc32_little(crc, buf, len);
 | |
|         else
 | |
|             return crc32_big(crc, buf, len);
 | |
|     }
 | |
| #endif /* BYFOUR */
 | |
|     crc = crc ^ 0xffffffffUL;
 | |
|     while (len >= 8) {
 | |
|         DO8;
 | |
|         len -= 8;
 | |
|     }
 | |
|     if (len) do {
 | |
|         DO1;
 | |
|     } while (--len);
 | |
|     return crc ^ 0xffffffffUL;
 | |
| }
 | |
| 
 | |
| /* ========================================================================= */
 | |
| unsigned long ZEXPORT crc32(crc, buf, len)
 | |
|     unsigned long crc;
 | |
|     const unsigned char FAR *buf;
 | |
|     uInt len;
 | |
| {
 | |
|     return crc32_z(crc, buf, len);
 | |
| }
 | |
| 
 | |
| #ifdef BYFOUR
 | |
| 
 | |
| /*
 | |
|    This BYFOUR code accesses the passed unsigned char * buffer with a 32-bit
 | |
|    integer pointer type. This violates the strict aliasing rule, where a
 | |
|    compiler can assume, for optimization purposes, that two pointers to
 | |
|    fundamentally different types won't ever point to the same memory. This can
 | |
|    manifest as a problem only if one of the pointers is written to. This code
 | |
|    only reads from those pointers. So long as this code remains isolated in
 | |
|    this compilation unit, there won't be a problem. For this reason, this code
 | |
|    should not be copied and pasted into a compilation unit in which other code
 | |
|    writes to the buffer that is passed to these routines.
 | |
|  */
 | |
| 
 | |
| /* ========================================================================= */
 | |
| #define DOLIT4 c ^= *buf4++; \
 | |
|         c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
 | |
|             crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
 | |
| #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
 | |
| 
 | |
| /* ========================================================================= */
 | |
| local unsigned long crc32_little(crc, buf, len)
 | |
|     unsigned long crc;
 | |
|     const unsigned char FAR *buf;
 | |
|     z_size_t len;
 | |
| {
 | |
|     register z_crc_t c;
 | |
|     register const z_crc_t FAR *buf4;
 | |
| 
 | |
|     c = (z_crc_t)crc;
 | |
|     c = ~c;
 | |
|     while (len && ((ptrdiff_t)buf & 3)) {
 | |
|         c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
 | |
|         len--;
 | |
|     }
 | |
| 
 | |
|     buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
 | |
|     while (len >= 32) {
 | |
|         DOLIT32;
 | |
|         len -= 32;
 | |
|     }
 | |
|     while (len >= 4) {
 | |
|         DOLIT4;
 | |
|         len -= 4;
 | |
|     }
 | |
|     buf = (const unsigned char FAR *)buf4;
 | |
| 
 | |
|     if (len) do {
 | |
|         c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
 | |
|     } while (--len);
 | |
|     c = ~c;
 | |
|     return (unsigned long)c;
 | |
| }
 | |
| 
 | |
| /* ========================================================================= */
 | |
| #define DOBIG4 c ^= *buf4++; \
 | |
|         c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
 | |
|             crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
 | |
| #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
 | |
| 
 | |
| /* ========================================================================= */
 | |
| local unsigned long crc32_big(crc, buf, len)
 | |
|     unsigned long crc;
 | |
|     const unsigned char FAR *buf;
 | |
|     z_size_t len;
 | |
| {
 | |
|     register z_crc_t c;
 | |
|     register const z_crc_t FAR *buf4;
 | |
| 
 | |
|     c = ZSWAP32((z_crc_t)crc);
 | |
|     c = ~c;
 | |
|     while (len && ((ptrdiff_t)buf & 3)) {
 | |
|         c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
 | |
|         len--;
 | |
|     }
 | |
| 
 | |
|     buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
 | |
|     while (len >= 32) {
 | |
|         DOBIG32;
 | |
|         len -= 32;
 | |
|     }
 | |
|     while (len >= 4) {
 | |
|         DOBIG4;
 | |
|         len -= 4;
 | |
|     }
 | |
|     buf = (const unsigned char FAR *)buf4;
 | |
| 
 | |
|     if (len) do {
 | |
|         c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
 | |
|     } while (--len);
 | |
|     c = ~c;
 | |
|     return (unsigned long)(ZSWAP32(c));
 | |
| }
 | |
| 
 | |
| #endif /* BYFOUR */
 | |
| 
 | |
| #define GF2_DIM 32      /* dimension of GF(2) vectors (length of CRC) */
 | |
| 
 | |
| /* ========================================================================= */
 | |
| local unsigned long gf2_matrix_times(mat, vec)
 | |
|     unsigned long *mat;
 | |
|     unsigned long vec;
 | |
| {
 | |
|     unsigned long sum;
 | |
| 
 | |
|     sum = 0;
 | |
|     while (vec) {
 | |
|         if (vec & 1)
 | |
|             sum ^= *mat;
 | |
|         vec >>= 1;
 | |
|         mat++;
 | |
|     }
 | |
|     return sum;
 | |
| }
 | |
| 
 | |
| /* ========================================================================= */
 | |
| local void gf2_matrix_square(square, mat)
 | |
|     unsigned long *square;
 | |
|     unsigned long *mat;
 | |
| {
 | |
|     int n;
 | |
| 
 | |
|     for (n = 0; n < GF2_DIM; n++)
 | |
|         square[n] = gf2_matrix_times(mat, mat[n]);
 | |
| }
 | |
| 
 | |
| /* ========================================================================= */
 | |
| local uLong crc32_combine_(crc1, crc2, len2)
 | |
|     uLong crc1;
 | |
|     uLong crc2;
 | |
|     z_off64_t len2;
 | |
| {
 | |
|     int n;
 | |
|     unsigned long row;
 | |
|     unsigned long even[GF2_DIM];    /* even-power-of-two zeros operator */
 | |
|     unsigned long odd[GF2_DIM];     /* odd-power-of-two zeros operator */
 | |
| 
 | |
|     /* degenerate case (also disallow negative lengths) */
 | |
|     if (len2 <= 0)
 | |
|         return crc1;
 | |
| 
 | |
|     /* put operator for one zero bit in odd */
 | |
|     odd[0] = 0xedb88320UL;          /* CRC-32 polynomial */
 | |
|     row = 1;
 | |
|     for (n = 1; n < GF2_DIM; n++) {
 | |
|         odd[n] = row;
 | |
|         row <<= 1;
 | |
|     }
 | |
| 
 | |
|     /* put operator for two zero bits in even */
 | |
|     gf2_matrix_square(even, odd);
 | |
| 
 | |
|     /* put operator for four zero bits in odd */
 | |
|     gf2_matrix_square(odd, even);
 | |
| 
 | |
|     /* apply len2 zeros to crc1 (first square will put the operator for one
 | |
|        zero byte, eight zero bits, in even) */
 | |
|     do {
 | |
|         /* apply zeros operator for this bit of len2 */
 | |
|         gf2_matrix_square(even, odd);
 | |
|         if (len2 & 1)
 | |
|             crc1 = gf2_matrix_times(even, crc1);
 | |
|         len2 >>= 1;
 | |
| 
 | |
|         /* if no more bits set, then done */
 | |
|         if (len2 == 0)
 | |
|             break;
 | |
| 
 | |
|         /* another iteration of the loop with odd and even swapped */
 | |
|         gf2_matrix_square(odd, even);
 | |
|         if (len2 & 1)
 | |
|             crc1 = gf2_matrix_times(odd, crc1);
 | |
|         len2 >>= 1;
 | |
| 
 | |
|         /* if no more bits set, then done */
 | |
|     } while (len2 != 0);
 | |
| 
 | |
|     /* return combined crc */
 | |
|     crc1 ^= crc2;
 | |
|     return crc1;
 | |
| }
 | |
| 
 | |
| /* ========================================================================= */
 | |
| uLong ZEXPORT crc32_combine(crc1, crc2, len2)
 | |
|     uLong crc1;
 | |
|     uLong crc2;
 | |
|     z_off_t len2;
 | |
| {
 | |
|     return crc32_combine_(crc1, crc2, len2);
 | |
| }
 | |
| 
 | |
| uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
 | |
|     uLong crc1;
 | |
|     uLong crc2;
 | |
|     z_off64_t len2;
 | |
| {
 | |
|     return crc32_combine_(crc1, crc2, len2);
 | |
| }
 | 
