furnace/src/engine/platform/sid3.cpp
LTVA1 90e5fb79e5 cutoff and resonance scaling and instrument save/load!
also mix minmod CPU usage variable initialization, and work a bit on Russian locale
2024-08-16 17:37:07 +03:00

1365 lines
43 KiB
C++

/**
* Furnace Tracker - multi-system chiptune tracker
* Copyright (C) 2021-2024 tildearrow and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "sid3.h"
#include "../engine.h"
#include "IconsFontAwesome4.h"
#include <math.h>
#include "../../ta-log.h"
#define rWrite(a,v) if (!skipRegisterWrites) {writes.push(QueuedWrite(a,v)); if (dumpWrites) {addWrite(a,v);} }
#define CHIP_FREQBASE 524288
#define CHIP_DIVIDER 1
#define CURRENT_FREQ_IN_HZ() ((double)chipClock / pow(2.0, (double)SID3_ACC_BITS) * (double)chan[i].freq)
#define c_5_FREQ() (parent->song.tuning / pow(2, (12.0 * 9.0 + 9.0) / 12.0))
#define FREQ_FOR_NOTE(note) (c_5_FREQ() * pow(2, (double)note / 12.0))
const char* regCheatSheetSID3[]={
"FreqL0", "00",
"FreqH0", "01",
"PWL0", "02",
"PWH0Vol", "03",
"Control0", "04",
"AtkDcy0", "05",
"StnRis0", "06",
"FreqL1", "07",
"FreqH1", "08",
"PWL1", "09",
"PWH1Vol", "0A",
"Control1", "0B",
"AtkDcy1", "0C",
"StnRis1", "0D",
"FreqL2", "0E",
"FreqH2", "0F",
"PWL2", "10",
"PWH2Vol", "11",
"Control2", "12",
"AtkDcy2", "13",
"StnRis2", "14",
"FCL0Ctrl", "15",
"FCH0", "16",
"FilterRes0", "17",
"FCL1Ctrl", "18",
"FCH1", "19",
"FilterRes1", "1A",
"FCL2Ctrl", "1B",
"FCH2", "1C",
"FilterRes2", "1D",
"NoiModeFrMSB01", "1E",
"WaveMixModeFrMSB2", "1F",
NULL
};
const char** DivPlatformSID3::getRegisterSheet() {
return regCheatSheetSID3;
}
void DivPlatformSID3::acquire(short** buf, size_t len)
{
for (size_t i=0; i<len; i++)
{
if (chan[SID3_NUM_CHANNELS - 1].pcm && chan[SID3_NUM_CHANNELS - 1].dacSample!=-1)
{
chan[SID3_NUM_CHANNELS - 1].dacPeriod+=chan[SID3_NUM_CHANNELS - 1].dacRate;
if (chan[SID3_NUM_CHANNELS - 1].dacPeriod>rate)
{
DivSample* s=parent->getSample(chan[SID3_NUM_CHANNELS - 1].dacSample);
if (s->samples<=0 || chan[SID3_NUM_CHANNELS - 1].dacPos>=s->samples)
{
chan[SID3_NUM_CHANNELS - 1].dacSample=-1;
continue;
}
int dacData=s->data16[chan[SID3_NUM_CHANNELS - 1].dacPos] + 32767;
chan[SID3_NUM_CHANNELS - 1].dacOut=CLAMP(dacData,0,65535);
updateSample = true;
sampleTick = 0;
chan[SID3_NUM_CHANNELS - 1].dacPos++;
if (s->isLoopable() && chan[SID3_NUM_CHANNELS - 1].dacPos>=(unsigned int)s->loopEnd)
{
chan[SID3_NUM_CHANNELS - 1].dacPos=s->loopStart;
}
else if (chan[SID3_NUM_CHANNELS - 1].dacPos>=s->samples)
{
chan[SID3_NUM_CHANNELS - 1].dacSample=-1;
}
chan[SID3_NUM_CHANNELS - 1].dacPeriod-=rate;
}
}
sampleTick++;
if(chan[SID3_NUM_CHANNELS - 1].pcm)
{
if(sampleTick == 2 && updateSample)
{
if (!isMuted[SID3_NUM_CHANNELS - 1])
{
sid3_write(sid3, SID3_REGISTER_STREAMED_SAMPLE_HIGH + (SID3_NUM_CHANNELS - 1) * SID3_REGISTERS_PER_CHANNEL, chan[SID3_NUM_CHANNELS - 1].dacOut >> 8);
regPool[SID3_REGISTER_STREAMED_SAMPLE_HIGH + (SID3_NUM_CHANNELS - 1) * SID3_REGISTERS_PER_CHANNEL]=chan[SID3_NUM_CHANNELS - 1].dacOut >> 8;
}
else
{
sid3_write(sid3, SID3_REGISTER_STREAMED_SAMPLE_HIGH + (SID3_NUM_CHANNELS - 1) * SID3_REGISTERS_PER_CHANNEL, 32768 >> 8);
regPool[SID3_REGISTER_STREAMED_SAMPLE_HIGH + (SID3_NUM_CHANNELS - 1) * SID3_REGISTERS_PER_CHANNEL]=32768 >> 8;
}
}
else if(sampleTick == 3 && updateSample)
{
if (!isMuted[SID3_NUM_CHANNELS - 1])
{
sid3_write(sid3, SID3_REGISTER_STREAMED_SAMPLE_LOW + (SID3_NUM_CHANNELS - 1) * SID3_REGISTERS_PER_CHANNEL, chan[SID3_NUM_CHANNELS - 1].dacOut & 0xff);
regPool[SID3_REGISTER_STREAMED_SAMPLE_LOW + (SID3_NUM_CHANNELS - 1) * SID3_REGISTERS_PER_CHANNEL]=chan[SID3_NUM_CHANNELS - 1].dacOut & 0xff;
}
else
{
sid3_write(sid3, SID3_REGISTER_STREAMED_SAMPLE_LOW + (SID3_NUM_CHANNELS - 1) * SID3_REGISTERS_PER_CHANNEL, 32768 & 0xff);
regPool[SID3_REGISTER_STREAMED_SAMPLE_LOW + (SID3_NUM_CHANNELS - 1) * SID3_REGISTERS_PER_CHANNEL]=32768 & 0xff;
}
sampleTick = 0;
updateSample = false;
}
else
{
if (!writes.empty())
{
QueuedWrite w=writes.front();
sid3_write(sid3, w.addr, w.val);
regPool[w.addr % SID3_NUM_REGISTERS]=w.val;
writes.pop();
}
}
}
else
{
if (!writes.empty())
{
QueuedWrite w=writes.front();
sid3_write(sid3, w.addr, w.val);
regPool[w.addr % SID3_NUM_REGISTERS]=w.val;
writes.pop();
}
}
sid3_clock(sid3);
buf[0][i]=sid3->output_l;
buf[1][i]=sid3->output_r;
if (++writeOscBuf>=8)
{
writeOscBuf=0;
for(int j = 0; j < SID3_NUM_CHANNELS - 1; j++)
{
oscBuf[j]->data[oscBuf[j]->needle++] = sid3->muted[j] ? 0 : (sid3->channel_output[j] / 4);
}
oscBuf[SID3_NUM_CHANNELS - 1]->data[oscBuf[SID3_NUM_CHANNELS - 1]->needle++] = sid3->muted[SID3_NUM_CHANNELS - 1] ? 0 : (sid3->wave_channel_output / 4);
}
}
}
void DivPlatformSID3::updateFlags(int channel, bool gate)
{
rWrite(SID3_REGISTER_FLAGS + channel * SID3_REGISTERS_PER_CHANNEL, (gate ? 1 : 0) |
(chan[channel].ring ? SID3_CHAN_ENABLE_RING_MOD : 0) |
(chan[channel].sync ? SID3_CHAN_ENABLE_HARD_SYNC : 0) |
(chan[channel].phase ? SID3_CHAN_ENABLE_PHASE_MOD : 0) |
(chan[channel].phaseReset ? SID3_CHAN_PHASE_RESET : 0) |
(chan[channel].envReset ? SID3_CHAN_ENV_RESET : 0) |
(chan[channel].phaseResetNoise ? SID3_CHAN_NOISE_PHASE_RESET : 0) |
(chan[channel].oneBitNoise ? SID3_CHAN_1_BIT_NOISE : 0));
}
void DivPlatformSID3::updateFilter(int channel, int filter)
{
rWrite(SID3_REGISTER_FILT_MODE + filter * SID3_REGISTERS_PER_FILTER + channel*SID3_REGISTERS_PER_CHANNEL,
chan[channel].filt[filter].mode | (chan[channel].filt[filter].enabled ? SID3_FILTER_ENABLE : 0));
rWrite(SID3_REGISTER_FILT_CUTOFF_HIGH + filter * SID3_REGISTERS_PER_FILTER + channel*SID3_REGISTERS_PER_CHANNEL,
chan[channel].filt[filter].cutoff >> 8);
rWrite(SID3_REGISTER_FILT_CUTOFF_LOW + filter * SID3_REGISTERS_PER_FILTER + channel*SID3_REGISTERS_PER_CHANNEL,
chan[channel].filt[filter].cutoff & 0xff);
rWrite(SID3_REGISTER_FILT_RESONANCE + filter * SID3_REGISTERS_PER_FILTER + channel*SID3_REGISTERS_PER_CHANNEL,
chan[channel].filt[filter].resonance);
rWrite(SID3_REGISTER_FILT_DISTORTION + filter * SID3_REGISTERS_PER_FILTER + channel*SID3_REGISTERS_PER_CHANNEL,
chan[channel].filt[filter].distortion_level);
rWrite(SID3_REGISTER_FILT_CONNECTION + filter * SID3_REGISTERS_PER_FILTER + channel*SID3_REGISTERS_PER_CHANNEL,
chan[channel].filt[filter].filter_matrix);
rWrite(SID3_REGISTER_FILT_OUTPUT_VOLUME + filter * SID3_REGISTERS_PER_FILTER + channel*SID3_REGISTERS_PER_CHANNEL,
chan[channel].filt[filter].output_volume);
}
void DivPlatformSID3::updateFreq(int channel)
{
rWrite(SID3_REGISTER_FREQ_HIGH + channel*SID3_REGISTERS_PER_CHANNEL,(chan[channel].freq >> 16) & 0xff);
rWrite(SID3_REGISTER_FREQ_MID + channel*SID3_REGISTERS_PER_CHANNEL,(chan[channel].freq >> 8) & 0xff);
rWrite(SID3_REGISTER_FREQ_LOW + channel*SID3_REGISTERS_PER_CHANNEL,chan[channel].freq & 0xff);
}
void DivPlatformSID3::updateNoiseFreq(int channel)
{
rWrite(SID3_REGISTER_NOISE_FREQ_HIGH + channel*SID3_REGISTERS_PER_CHANNEL,(chan[channel].noiseFreq >> 16) & 0xff);
rWrite(SID3_REGISTER_NOISE_FREQ_MID + channel*SID3_REGISTERS_PER_CHANNEL,(chan[channel].noiseFreq >> 8) & 0xff);
rWrite(SID3_REGISTER_NOISE_FREQ_LOW + channel*SID3_REGISTERS_PER_CHANNEL,chan[channel].noiseFreq & 0xff);
}
void DivPlatformSID3::updateNoiseLFSRMask(int channel)
{
rWrite(SID3_REGISTER_NOISE_LFSR_HIGHEST + channel*SID3_REGISTERS_PER_CHANNEL,(chan[channel].noiseLFSRMask >> 24) & 0xff);
rWrite(SID3_REGISTER_NOISE_LFSR_HIGH + channel*SID3_REGISTERS_PER_CHANNEL,(chan[channel].noiseLFSRMask >> 16) & 0xff);
rWrite(SID3_REGISTER_NOISE_LFSR_MID + channel*SID3_REGISTERS_PER_CHANNEL,(chan[channel].noiseLFSRMask >> 8) & 0xff);
rWrite(SID3_REGISTER_NOISE_LFSR_LOW + channel*SID3_REGISTERS_PER_CHANNEL,chan[channel].noiseLFSRMask & 0xff);
}
void DivPlatformSID3::updateDuty(int channel)
{
rWrite(SID3_REGISTER_PW_HIGH + channel*SID3_REGISTERS_PER_CHANNEL,(chan[channel].duty >> 8) & 0xff);
rWrite(SID3_REGISTER_PW_LOW + channel*SID3_REGISTERS_PER_CHANNEL,chan[channel].duty & 0xff);
}
void DivPlatformSID3::updateEnvelope(int channel)
{
rWrite(SID3_REGISTER_ADSR_A + channel * SID3_REGISTERS_PER_CHANNEL, chan[channel].attack); //attack
rWrite(SID3_REGISTER_ADSR_D + channel * SID3_REGISTERS_PER_CHANNEL, chan[channel].decay); //decay
rWrite(SID3_REGISTER_ADSR_S + channel * SID3_REGISTERS_PER_CHANNEL, chan[channel].sustain); //sustain
rWrite(SID3_REGISTER_ADSR_SR + channel * SID3_REGISTERS_PER_CHANNEL, chan[channel].sr); //sr
rWrite(SID3_REGISTER_ADSR_R + channel * SID3_REGISTERS_PER_CHANNEL, chan[channel].release); //release
}
void DivPlatformSID3::updatePanning(int channel)
{
rWrite(SID3_REGISTER_PAN_LEFT + channel*SID3_REGISTERS_PER_CHANNEL,chan[channel].panLeft);
rWrite(SID3_REGISTER_PAN_RIGHT + channel*SID3_REGISTERS_PER_CHANNEL,chan[channel].panRight);
}
void DivPlatformSID3::updateWave()
{
int channel = SID3_NUM_CHANNELS - 1;
for(int i = 0; i < 256; i++)
{
uint8_t val = ws.output[i & 255];
rWrite(SID3_REGISTER_PW_HIGH + channel*SID3_REGISTERS_PER_CHANNEL,i);
rWrite(SID3_REGISTER_PW_LOW + channel*SID3_REGISTERS_PER_CHANNEL,val);
}
}
void DivPlatformSID3::tick(bool sysTick)
{
bool doUpdateWave = false;
for (int i=0; i<SID3_NUM_CHANNELS; i++)
{
chan[i].std.next();
DivInstrument* ins=parent->getIns(chan[i].ins,DIV_INS_SID3);
bool panChanged = false;
bool flagsChanged = false;
bool envChanged = false;
if(sysTick)
{
if(chan[i].pw_slide != 0)
{
chan[i].duty -= chan[i].pw_slide;
chan[i].duty = CLAMP(chan[i].duty, 0, 0xffff);
updateDuty(i);
}
for(int j = 0; j < SID3_NUM_FILTERS; j++) //filters' slides
{
if(chan[i].filt[j].cutoff_slide != 0)
{
chan[i].filt[j].cutoff += chan[i].filt[j].cutoff_slide;
chan[i].filt[j].cutoff = CLAMP(chan[i].filt[j].cutoff, 0, 0xffff);
updateFilter(i, j);
}
}
if(chan[i].phase_reset_counter >= 0)
{
if(chan[i].phase_reset_counter == 0)
{
chan[i].phaseReset = true;
flagsChanged = true;
}
chan[i].phase_reset_counter--;
}
if(chan[i].noise_phase_reset_counter >= 0)
{
if(chan[i].noise_phase_reset_counter == 0)
{
chan[i].phaseResetNoise = true;
flagsChanged = true;
}
chan[i].noise_phase_reset_counter--;
}
if(chan[i].envelope_reset_counter >= 0)
{
if(chan[i].envelope_reset_counter == 0)
{
chan[i].envReset = true;
flagsChanged = true;
}
chan[i].envelope_reset_counter--;
}
}
if (chan[i].std.vol.had)
{
chan[i].outVol=VOL_SCALE_LINEAR(chan[i].vol&255,MIN(255,chan[i].std.vol.val),255);
rWrite(13 + i * SID3_REGISTERS_PER_CHANNEL, chan[i].outVol);
}
if (NEW_ARP_STRAT) {
chan[i].handleArp();
} else if (chan[i].std.arp.had) {
if (!chan[i].inPorta) {
chan[i].baseFreq=NOTE_FREQUENCY(parent->calcArp(chan[i].note,chan[i].std.arp.val));
}
chan[i].freqChanged=true;
}
if (chan[i].std.pitch.had) {
if (chan[i].std.pitch.mode) {
chan[i].pitch2+=chan[i].std.pitch.val;
CLAMP_VAR(chan[i].pitch2,-65535,65535);
} else {
chan[i].pitch2=chan[i].std.pitch.val;
}
chan[i].freqChanged=true;
}
if (chan[i].std.duty.had) {
DivInstrument* ins=parent->getIns(chan[i].ins,DIV_INS_SID3);
if (ins->c64.dutyIsAbs) {
chan[i].duty=chan[i].std.duty.val;
} else {
chan[i].duty-=chan[i].std.duty.val;
}
chan[i].duty&=65535;
updateDuty(i);
}
if (chan[i].std.wave.had) {
DivInstrument* ins=parent->getIns(chan[i].ins,DIV_INS_SID3);
if(i == SID3_NUM_CHANNELS - 1 && ins->sid3.doWavetable)
{
chan[i].wavetable = chan[i].std.wave.val & 0xff;
ws.changeWave1(chan[i].wavetable, true);
doUpdateWave = true;
}
else
{
chan[i].wave = chan[i].std.wave.val & 0xff;
rWrite(SID3_REGISTER_WAVEFORM + i * SID3_REGISTERS_PER_CHANNEL, chan[i].wave);
}
}
if (chan[i].std.alg.had) { //special wave
chan[i].special_wave = chan[i].std.alg.val & 0xff;
rWrite(SID3_REGISTER_SPECIAL_WAVE + i * SID3_REGISTERS_PER_CHANNEL, chan[i].special_wave);
}
if (chan[i].std.op[3].am.had) { //noise arpeggio
//chan[i].handleArpNoise(0);
chan[i].noiseFreqChanged = true;
}
chan[i].handleArpNoise(0);
chan[i].handlePitchNoise();
if (chan[i].std.op[0].ar.had) { //noise pitch
//chan[i].handlePitchNoise();
chan[i].noiseFreqChanged = true;
}
if (chan[i].std.panL.had) {
panChanged = true;
chan[i].panLeft = chan[i].std.panL.val & 0xff;
}
if (chan[i].std.panR.had) {
panChanged = true;
chan[i].panRight = chan[i].std.panR.val & 0xff;
}
if (chan[i].std.op[2].ar.had) { //channel signal inversion
chan[i].phaseInv = chan[i].std.op[2].ar.val & 3;
rWrite(SID3_REGISTER_PHASE_INVERSION + i * SID3_REGISTERS_PER_CHANNEL, chan[i].phaseInv);
}
if (chan[i].std.op[0].am.had) { //key on/off
chan[i].gate = chan[i].std.op[0].am.val & 1;
flagsChanged = true;
}
if (chan[i].std.ex1.had) { //ring mod, hard sync, phase mod
chan[i].phase = chan[i].std.ex1.val & 1;
chan[i].sync = chan[i].std.ex1.val & 2;
chan[i].ring = chan[i].std.ex1.val & 4;
flagsChanged = true;
}
if (chan[i].std.ams.had) { //hard sync source
chan[i].syncSrc = chan[i].std.ams.val & 0xff;
rWrite(SID3_REGISTER_SYNC_SRC + i * SID3_REGISTERS_PER_CHANNEL, chan[i].syncSrc);
}
if (chan[i].std.fms.had) { //ring mod source
chan[i].ringSrc = chan[i].std.fms.val & 0xff;
rWrite(SID3_REGISTER_RING_MOD_SRC + i * SID3_REGISTERS_PER_CHANNEL, chan[i].ringSrc);
}
if (chan[i].std.fb.had) { //phase mod source
chan[i].phaseSrc = chan[i].std.fb.val & 0xff;
rWrite(SID3_REGISTER_PHASE_MOD_SRC + i * SID3_REGISTERS_PER_CHANNEL, chan[i].phaseSrc);
}
if (chan[i].std.op[3].ar.had) { //feedback
chan[i].feedback = chan[i].std.op[3].ar.val & 0xff;
rWrite(SID3_REGISTER_FEEDBACK + i * SID3_REGISTERS_PER_CHANNEL, chan[i].feedback);
}
if (chan[i].std.phaseReset.had) {
chan[i].phaseReset = chan[i].std.phaseReset.val & 1;
if(chan[i].phaseReset)
{
flagsChanged = true;
}
if (chan[i].pcm)
{
if (chan[i].active && chan[i].dacSample>=0 && chan[i].dacSample<parent->song.sampleLen)
{
chan[i].dacPos=0;
chan[i].dacPeriod=0;
}
}
}
if (chan[i].std.op[1].am.had) { //noise phase reset
chan[i].phaseResetNoise = chan[i].std.op[1].am.val & 1;
if(chan[i].phaseResetNoise)
{
flagsChanged = true;
}
}
if (chan[i].std.op[2].am.had) { //envelope reset
chan[i].envReset = chan[i].std.op[2].am.val & 1;
if(chan[i].envReset)
{
flagsChanged = true;
}
}
if (chan[i].std.ex2.had) { //attack
chan[i].attack = chan[i].std.ex2.val & 0xff;
envChanged = true;
}
if (chan[i].std.ex3.had) { //decay
chan[i].decay = chan[i].std.ex3.val & 0xff;
envChanged = true;
}
if (chan[i].std.ex4.had) { //sustain
chan[i].sustain = chan[i].std.ex4.val & 0xff;
envChanged = true;
}
if (chan[i].std.ex5.had) { //sustain rate
chan[i].sr = chan[i].std.ex5.val & 0xff;
envChanged = true;
}
if (chan[i].std.ex6.had) { //release
chan[i].release = chan[i].std.ex6.val & 0xff;
envChanged = true;
}
if (chan[i].std.ex7.had) { //noise LFSR feedback bits
chan[i].noiseLFSRMask = chan[i].std.ex7.val & 0x3fffffff;
updateNoiseLFSRMask(i);
}
if (chan[i].std.op[1].ar.had) { //1-bit noise / PCM mode for wavetable chan
if(i == SID3_NUM_CHANNELS - 1) //wave chan
{
rWrite(SID3_REGISTER_WAVEFORM + i * SID3_REGISTERS_PER_CHANNEL, chan[i].std.op[1].ar.val & 1);
}
else
{
if((uint32_t)chan[i].oneBitNoise != (chan[i].std.op[1].ar.val & 1))
{
chan[i].oneBitNoise = chan[i].std.op[1].ar.val & 1;
flagsChanged = true;
}
}
}
if (chan[i].std.ex8.had) { //wave mix mode
chan[i].mix_mode = chan[i].std.ex8.val & 0xff;
rWrite(SID3_REGISTER_MIXMODE + i * SID3_REGISTERS_PER_CHANNEL, chan[i].mix_mode); //mixmode
}
for(int j = 0; j < SID3_NUM_FILTERS; j++) //filter macros
{
DivMacroInt::IntOp* op = &chan[i].std.op[j];
DivPlatformSID3::Channel::Filter* ch_filt = &chan[i].filt[j];
DivInstrumentSID3::Filter* ins_filt = &ins->sid3.filt[j];
bool doUpdateFilter = false;
if (op->d2r.had) { //cutoff
if (ins_filt->absoluteCutoff) {
ch_filt->cutoff=op->d2r.val;
} else {
ch_filt->cutoff+=op->d2r.val;
}
ch_filt->cutoff&=65535;
doUpdateFilter = true;
}
if (op->dam.had) { //resonance
ch_filt->resonance=op->dam.val & 0xff;
doUpdateFilter = true;
}
if (op->dr.had) { //filter toggle
ch_filt->enabled=op->dr.val & 1;
doUpdateFilter = true;
}
if (op->dt2.had) { //distortion level
ch_filt->distortion_level=op->dt2.val & 0xff;
doUpdateFilter = true;
}
if (op->dt.had) { //output volume
ch_filt->output_volume=op->dt.val & 0xff;
doUpdateFilter = true;
}
if (op->dvb.had) { //connect to channel input
ch_filt->mode &= ~SID3_FILTER_CHANNEL_INPUT;
ch_filt->mode |= (op->dvb.val & 1) ? SID3_FILTER_CHANNEL_INPUT : 0;
doUpdateFilter = true;
}
if (op->egt.had) { //connect to channel output
ch_filt->mode &= ~SID3_FILTER_OUTPUT;
ch_filt->mode |= (op->egt.val & 1) ? SID3_FILTER_OUTPUT : 0;
doUpdateFilter = true;
}
if (op->ksl.had) { //connection matrix row
ch_filt->filter_matrix=op->ksl.val & 0xf;
doUpdateFilter = true;
}
if (op->ksr.had) { //filter mode
ch_filt->mode &= ~(SID3_FILTER_LP | SID3_FILTER_HP | SID3_FILTER_BP);
if(op->ksr.val & 1) ch_filt->mode |= SID3_FILTER_LP;
if(op->ksr.val & 2) ch_filt->mode |= SID3_FILTER_BP;
if(op->ksr.val & 4) ch_filt->mode |= SID3_FILTER_HP;
doUpdateFilter = true;
}
if(doUpdateFilter)
{
updateFilter(i, j);
}
}
if(panChanged)
{
updatePanning(i);
}
if(flagsChanged)
{
updateFlags(i, chan[i].gate);
chan[i].phaseReset = false;
chan[i].phaseResetNoise = false;
chan[i].envReset = false;
}
if(envChanged)
{
updateEnvelope(i);
}
if (chan[i].freqChanged || chan[i].keyOn || chan[i].keyOff)
{
chan[i].freq=parent->calcFreq(chan[i].baseFreq,chan[i].pitch,chan[i].fixedArp?chan[i].baseNoteOverride:chan[i].arpOff,chan[i].fixedArp,false,2,chan[i].pitch2,chipClock,CHIP_FREQBASE * 64);
if (chan[i].keyOn)
{
DivInstrument* ins=parent->getIns(chan[i].ins,DIV_INS_SID3);
if(i == SID3_NUM_CHANNELS - 1)
{
if(ins->sid3.doWavetable && !ins->amiga.useSample)
{
rWrite(SID3_REGISTER_WAVEFORM + i * SID3_REGISTERS_PER_CHANNEL, 0); //wave channel mode
}
else
{
rWrite(SID3_REGISTER_WAVEFORM + i * SID3_REGISTERS_PER_CHANNEL, 1); //wave channel mode
}
}
else
{
rWrite(SID3_REGISTER_WAVEFORM + i * SID3_REGISTERS_PER_CHANNEL, chan[i].wave);
}
rWrite(SID3_REGISTER_SPECIAL_WAVE + i * SID3_REGISTERS_PER_CHANNEL, chan[i].special_wave); //special wave
rWrite(SID3_REGISTER_ADSR_VOL + i * SID3_REGISTERS_PER_CHANNEL, chan[i].outVol); //set volume
rWrite(SID3_REGISTER_MIXMODE + i * SID3_REGISTERS_PER_CHANNEL, chan[i].mix_mode); //mixmode
rWrite(SID3_REGISTER_RING_MOD_SRC + i * SID3_REGISTERS_PER_CHANNEL, chan[i].ringSrc); //ring mod source
rWrite(SID3_REGISTER_SYNC_SRC + i * SID3_REGISTERS_PER_CHANNEL, chan[i].syncSrc); //hard sync source
rWrite(SID3_REGISTER_PHASE_MOD_SRC + i * SID3_REGISTERS_PER_CHANNEL, chan[i].phaseSrc); //phase mod source
rWrite(SID3_REGISTER_PHASE_INVERSION + i * SID3_REGISTERS_PER_CHANNEL, chan[i].phaseInv); //signal inversion
rWrite(SID3_REGISTER_FEEDBACK + i * SID3_REGISTERS_PER_CHANNEL, chan[i].feedback); //feedback
updateEnvelope(i);
updateFlags(i, false); //gate off TODO: make it properly?
updateFlags(i, true); //gate on
chan[i].gate = true;
}
if (chan[i].keyOff)
{
updateFlags(i, false); //gate off
chan[i].gate = false;
}
if (chan[i].freq<0) chan[i].freq=0;
if (chan[i].freq>0xffffff) chan[i].freq=0xffffff;
updateFreq(i);
for(int j = 0; j < SID3_NUM_FILTERS; j++)
{
bool doUpdateFilter = false;
if(chan[i].filt[j].bindCutoffToNote && (!ins->sid3.filt[j].bindCutoffOnNote || chan[i].keyOn))
{
double scaling = CURRENT_FREQ_IN_HZ() / FREQ_FOR_NOTE(chan[i].filt[j].bindCutoffToNoteCenter) - 1.0;
if (chan[i].filt[j].bindCutoffToNoteDir)
{
scaling *= -1.0;
}
int cutoff = ins->sid3.filt[j].cutoff + (int)(scaling * (double)chan[i].filt[j].bindCutoffToNoteStrength * 80.0);
if(cutoff > 0xffff) cutoff = 0xffff;
if(cutoff < 0) cutoff = 0;
chan[i].filt[j].cutoff = cutoff;
doUpdateFilter = true;
}
if(chan[i].filt[j].bindResonanceToNote && (!ins->sid3.filt[j].bindResonanceOnNote || chan[i].keyOn))
{
double scaling = CURRENT_FREQ_IN_HZ() / FREQ_FOR_NOTE(chan[i].filt[j].bindResonanceToNoteCenter) - 1.0;
if (chan[i].filt[j].bindResonanceToNoteDir)
{
scaling *= -1.0;
}
int res = ins->sid3.filt[j].resonance + (int)(scaling * (double)chan[i].filt[j].bindResonanceToNoteStrength * 80.0 / 256.0);
if(res > 0xff) res = 0xff;
if(res < 0) res = 0;
chan[i].filt[j].resonance = res;
doUpdateFilter = true;
}
if(doUpdateFilter)
{
updateFilter(i, j);
}
}
if (chan[i].pcm && i == SID3_NUM_CHANNELS - 1) {
double off=1.0;
if (chan[i].dacSample>=0 && chan[i].dacSample<parent->song.sampleLen) {
DivSample* s=parent->getSample(chan[i].dacSample);
if (s->centerRate<1) {
off=1.0;
} else {
off=(double)s->centerRate/8363.0;
}
}
chan[i].dacRate=chan[i].freq*(off / 32.0);
}
chan[i].noiseFreqChanged = true;
if(chan[i].independentNoiseFreq)
{
chan[i].noise_pitch2 = chan[i].pitch2;
}
if (chan[i].keyOn) chan[i].keyOn=false;
if (chan[i].keyOff) chan[i].keyOff=false;
chan[i].freqChanged=false;
}
if(chan[i].noiseFreqChanged)
{
if(chan[i].independentNoiseFreq)
{
chan[i].noiseFreq=parent->calcFreq(chan[i].baseFreq,chan[i].pitch,chan[i].noise_fixedArp?chan[i].noise_baseNoteOverride:chan[i].noise_arpOff,chan[i].noise_fixedArp,false,2,chan[i].noise_pitch2,chipClock,CHIP_FREQBASE * 64);
if (chan[i].noiseFreq<0) chan[i].noiseFreq=0;
if (chan[i].noiseFreq>0xffffff) chan[i].noiseFreq=0xffffff;
}
else
{
chan[i].noiseFreq = chan[i].freq;
}
updateNoiseFreq(i);
chan[i].noiseFreqChanged = false;
}
}
if (chan[SID3_NUM_CHANNELS - 1].active && !chan[SID3_NUM_CHANNELS - 1].pcm)
{
if (ws.tick())
{
doUpdateWave = true;
}
}
if(doUpdateWave)
{
updateWave();
doUpdateWave = false;
}
}
int DivPlatformSID3::dispatch(DivCommand c) {
if (c.chan>SID3_NUM_CHANNELS - 1) return 0;
bool updEnv = false;
DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_SID3);
int filter = 0;
switch (c.cmd) {
case DIV_CMD_NOTE_ON: {
DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_SID3);
if (c.value!=DIV_NOTE_NULL) {
chan[c.chan].baseFreq=NOTE_FREQUENCY(c.value);
chan[c.chan].freqChanged=true;
chan[c.chan].note=c.value;
}
chan[c.chan].active=true;
chan[c.chan].keyOn=true;
if (ins->amiga.useSample)
{
chan[c.chan].pcm=true;
}
else
{
chan[c.chan].pcm=false;
}
if (chan[c.chan].pcm && c.chan == SID3_NUM_CHANNELS - 1)
{
if (ins->amiga.useSample)
{
if (skipRegisterWrites) break;
if (c.value!=DIV_NOTE_NULL) {
chan[c.chan].dacSample=ins->amiga.getSample(c.value);
chan[c.chan].sampleNote=c.value;
c.value=ins->amiga.getFreq(c.value);
chan[c.chan].sampleNoteDelta=c.value-chan[c.chan].sampleNote;
} else if (chan[c.chan].sampleNote!=DIV_NOTE_NULL) {
chan[c.chan].dacSample=ins->amiga.getSample(chan[c.chan].sampleNote);
c.value=ins->amiga.getFreq(chan[c.chan].sampleNote);
}
if (chan[c.chan].dacSample<0 || chan[c.chan].dacSample>=parent->song.sampleLen)
{
chan[c.chan].dacSample=-1;
break;
}
chan[c.chan].dacPos=0;
chan[c.chan].dacPeriod=0;
if (c.value!=DIV_NOTE_NULL)
{
chan[c.chan].baseFreq=NOTE_PERIODIC(c.value);
chan[c.chan].freqChanged=true;
chan[c.chan].note=c.value;
}
chan[c.chan].active=true;
chan[c.chan].macroInit(ins);
if (!parent->song.brokenOutVol && !chan[c.chan].std.vol.will) {
chan[c.chan].outVol=chan[c.chan].vol;
}
//chan[c.chan].keyOn=true;
}
}
if (chan[c.chan].insChanged)
{
chan[c.chan].wave = (ins->c64.triOn ? SID3_WAVE_TRIANGLE : 0) | (ins->c64.sawOn ? SID3_WAVE_SAW : 0) |
(ins->c64.pulseOn ? SID3_WAVE_PULSE : 0) | (ins->c64.noiseOn ? SID3_WAVE_NOISE : 0) | (ins->sid3.specialWaveOn ? SID3_WAVE_SPECIAL : 0); //waveform
chan[c.chan].special_wave = ins->sid3.special_wave; //special wave
chan[c.chan].attack=ins->c64.a;
chan[c.chan].decay=ins->c64.d;
chan[c.chan].sustain=ins->c64.s;
chan[c.chan].sr=ins->sid3.sr;
chan[c.chan].release=ins->c64.r;
if(ins->c64.resetDuty)
{
chan[c.chan].duty=ins->c64.duty;
updateDuty(c.chan);
}
chan[c.chan].sync = ins->c64.oscSync;
chan[c.chan].ring = ins->c64.ringMod;
chan[c.chan].phase = ins->sid3.phase_mod;
chan[c.chan].oneBitNoise = ins->sid3.oneBitNoise;
chan[c.chan].mix_mode = ins->sid2.mixMode;
chan[c.chan].ringSrc = ins->sid3.ring_mod_source;
chan[c.chan].syncSrc = ins->sid3.sync_source;
chan[c.chan].phaseSrc = ins->sid3.phase_mod_source;
chan[c.chan].independentNoiseFreq = ins->sid3.separateNoisePitch;
chan[c.chan].phaseInv = ins->sid3.phaseInv;
chan[c.chan].feedback = ins->sid3.feedback;
for(int j = 0; j < SID3_NUM_FILTERS; j++)
{
if(ins->sid3.filt[j].init)
{
chan[c.chan].filt[j].cutoff = ins->sid3.filt[j].cutoff;
chan[c.chan].filt[j].resonance = ins->sid3.filt[j].resonance;
chan[c.chan].filt[j].distortion_level = ins->sid3.filt[j].distortion_level;
chan[c.chan].filt[j].enabled = ins->sid3.filt[j].enabled;
chan[c.chan].filt[j].filter_matrix = ins->sid3.filt[j].filter_matrix;
chan[c.chan].filt[j].mode = ins->sid3.filt[j].mode;
chan[c.chan].filt[j].output_volume = ins->sid3.filt[j].output_volume;
chan[c.chan].filt[j].bindCutoffToNote = ins->sid3.filt[j].bindCutoffToNote;
chan[c.chan].filt[j].bindCutoffToNoteStrength = ins->sid3.filt[j].bindCutoffToNoteStrength;
chan[c.chan].filt[j].bindCutoffToNoteCenter = ins->sid3.filt[j].bindCutoffToNoteCenter;
chan[c.chan].filt[j].bindCutoffToNoteDir = ins->sid3.filt[j].bindCutoffToNoteDir;
chan[c.chan].filt[j].bindResonanceToNote = ins->sid3.filt[j].bindResonanceToNote;
chan[c.chan].filt[j].bindResonanceToNoteStrength = ins->sid3.filt[j].bindResonanceToNoteStrength;
chan[c.chan].filt[j].bindResonanceToNoteCenter = ins->sid3.filt[j].bindResonanceToNoteCenter;
chan[c.chan].filt[j].bindResonanceToNoteDir = ins->sid3.filt[j].bindResonanceToNoteDir;
updateFilter(c.chan, j);
}
}
if(c.chan == SID3_NUM_CHANNELS - 1)
{
if(!chan[c.chan].pcm)
{
ws.changeWave1(chan[c.chan].wavetable, false);
ws.init(ins,256,255,chan[c.chan].insChanged);
}
}
}
if (chan[c.chan].insChanged) {
chan[c.chan].insChanged=false;
}
chan[c.chan].macroInit(ins);
break;
}
case DIV_CMD_NOTE_OFF:
chan[c.chan].active=false;
chan[c.chan].keyOff=true;
chan[c.chan].keyOn=false;
//chan[c.chan].macroInit(NULL);
break;
case DIV_CMD_NOTE_OFF_ENV:
chan[c.chan].active=false;
chan[c.chan].keyOff=true;
chan[c.chan].keyOn=false;
chan[c.chan].std.release();
break;
case DIV_CMD_ENV_RELEASE:
chan[c.chan].std.release();
break;
case DIV_CMD_INSTRUMENT:
if (chan[c.chan].ins!=c.value || c.value2==1) {
chan[c.chan].insChanged=true;
chan[c.chan].ins=c.value;
}
break;
case DIV_CMD_VOLUME:
if (chan[c.chan].vol!=c.value) {
chan[c.chan].vol=c.value;
if (!chan[c.chan].std.vol.has) {
chan[c.chan].outVol=c.value;
chan[c.chan].vol=chan[c.chan].outVol;
rWrite(c.chan*7+3,(chan[c.chan].duty>>8) | (chan[c.chan].vol << 4));
}
}
break;
case DIV_CMD_GET_VOLUME:
if (chan[c.chan].std.vol.has) {
return chan[c.chan].vol;
}
return chan[c.chan].outVol;
break;
case DIV_CMD_PITCH:
chan[c.chan].pitch=c.value;
chan[c.chan].freqChanged=true;
break;
case DIV_CMD_NOTE_PORTA: {
int destFreq=NOTE_FREQUENCY(c.value2);
bool return2=false;
if (destFreq>chan[c.chan].baseFreq) {
chan[c.chan].baseFreq+=c.value;
if (chan[c.chan].baseFreq>=destFreq) {
chan[c.chan].baseFreq=destFreq;
return2=true;
}
} else {
chan[c.chan].baseFreq-=c.value;
if (chan[c.chan].baseFreq<=destFreq) {
chan[c.chan].baseFreq=destFreq;
return2=true;
}
}
chan[c.chan].freqChanged=true;
if (return2) {
chan[c.chan].inPorta=false;
return 2;
}
break;
}
case DIV_CMD_LEGATO:
chan[c.chan].baseFreq=NOTE_FREQUENCY(c.value+((HACKY_LEGATO_MESS)?(chan[c.chan].std.arp.val):(0)));
chan[c.chan].freqChanged=true;
chan[c.chan].note=c.value;
break;
case DIV_CMD_PRE_PORTA:
if (chan[c.chan].active && c.value2) {
if (parent->song.resetMacroOnPorta || parent->song.preNoteNoEffect) {
chan[c.chan].macroInit(parent->getIns(chan[c.chan].ins,DIV_INS_SID3));
chan[c.chan].keyOn=true;
}
}
if (!chan[c.chan].inPorta && c.value && !parent->song.brokenPortaArp && chan[c.chan].std.arp.will && !NEW_ARP_STRAT) chan[c.chan].baseFreq=NOTE_FREQUENCY(chan[c.chan].note);
chan[c.chan].inPorta=c.value;
break;
case DIV_CMD_PANNING: {
bool updPan = false;
if (!chan[c.chan].std.panL.has)
{
chan[c.chan].panLeft = c.value;
updPan = true;
}
if (!chan[c.chan].std.panR.has)
{
chan[c.chan].panRight = c.value2;
updPan = true;
}
if(updPan)
{
updatePanning(c.chan);
}
break;
}
case DIV_CMD_GET_VOLMAX:
return SID3_MAX_VOL;
break;
case DIV_CMD_WAVE:
if(c.chan == SID3_NUM_CHANNELS - 1 && ins->sid3.doWavetable)
{
chan[c.chan].wavetable = c.value & 0xff;
ws.changeWave1(chan[c.chan].wave);
}
else
{
chan[c.chan].wave = c.value & 0xff;
rWrite(SID3_REGISTER_WAVEFORM + c.chan * SID3_REGISTERS_PER_CHANNEL, chan[c.chan].wave);
}
break;
case DIV_CMD_SID3_SPECIAL_WAVE:
chan[c.chan].special_wave = c.value % SID3_NUM_SPECIAL_WAVES;
rWrite(SID3_REGISTER_SPECIAL_WAVE + c.chan * SID3_REGISTERS_PER_CHANNEL, chan[c.chan].special_wave);
break;
case DIV_CMD_C64_EXTENDED:
chan[c.chan].ring = c.value & 1;
chan[c.chan].sync = c.value & 2;
chan[c.chan].phase = c.value & 4;
updateFlags(c.chan, chan[c.chan].gate);
break;
case DIV_CMD_C64_DUTY_RESET:
if (c.value&15) {
DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_SID3);
chan[c.chan].duty=ins->c64.duty;
updateDuty(c.chan);
}
chan[c.chan].resetDuty=c.value>>4;
break;
case DIV_CMD_SID3_RING_MOD_SRC:
chan[c.chan].ringSrc = c.value % (SID3_NUM_CHANNELS + 1);
rWrite(SID3_REGISTER_RING_MOD_SRC + c.chan * SID3_REGISTERS_PER_CHANNEL, chan[c.chan].ringSrc);
break;
case DIV_CMD_SID3_HARD_SYNC_SRC:
chan[c.chan].syncSrc = c.value % SID3_NUM_CHANNELS;
rWrite(SID3_REGISTER_SYNC_SRC + c.chan * SID3_REGISTERS_PER_CHANNEL, chan[c.chan].syncSrc);
break;
case DIV_CMD_SID3_PHASE_MOD_SRC:
chan[c.chan].phaseSrc = c.value % SID3_NUM_CHANNELS;
rWrite(SID3_REGISTER_PHASE_MOD_SRC + c.chan * SID3_REGISTERS_PER_CHANNEL, chan[c.chan].phaseSrc);
break;
case DIV_CMD_FM_AR:
chan[c.chan].attack = c.value & 0xff;
updEnv = true;
break;
case DIV_CMD_FM_DR:
chan[c.chan].decay = c.value & 0xff;
updEnv = true;
break;
case DIV_CMD_FM_SL:
chan[c.chan].sustain = c.value & 0xff;
updEnv = true;
break;
case DIV_CMD_FM_D2R:
chan[c.chan].sr = c.value & 0xff;
updEnv = true;
break;
case DIV_CMD_FM_RR:
chan[c.chan].release = c.value & 0xff;
updEnv = true;
break;
case DIV_CMD_SID3_WAVE_MIX:
chan[c.chan].mix_mode = c.value % 5;
rWrite(SID3_REGISTER_MIXMODE + c.chan * SID3_REGISTERS_PER_CHANNEL, chan[c.chan].mix_mode);
break;
case DIV_CMD_SID3_LFSR_FEEDBACK_BITS:
chan[c.chan].noiseLFSRMask &= ~(0xffU << (8 * c.value2));
chan[c.chan].noiseLFSRMask |= ((c.value & (c.value2 == 3 ? 0x3f : 0xff)) << (8 * c.value2));
updateNoiseLFSRMask(c.chan);
break;
case DIV_CMD_SID3_1_BIT_NOISE:
if(c.chan == SID3_NUM_CHANNELS - 1) //wave chan
{
rWrite(SID3_REGISTER_WAVEFORM + c.chan * SID3_REGISTERS_PER_CHANNEL, c.value & 1); //PCM mode
}
else
{
if((uint32_t)chan[c.chan].oneBitNoise != (c.value & 1))
{
chan[c.chan].oneBitNoise = c.value & 1;
updateFlags(c.chan, chan[c.chan].gate);
}
}
break;
case DIV_CMD_C64_FINE_DUTY:
chan[c.chan].duty = (c.value & 0xfff) << 4;
updateDuty(c.chan);
break;
case DIV_CMD_FM_FB:
chan[c.chan].feedback = c.value & 0xff;
rWrite(SID3_REGISTER_FEEDBACK + c.chan * SID3_REGISTERS_PER_CHANNEL, chan[c.chan].feedback);
break;
case DIV_CMD_SID3_CHANNEL_INVERSION:
chan[c.chan].phaseInv = c.value & 3;
rWrite(SID3_REGISTER_PHASE_INVERSION + c.chan * SID3_REGISTERS_PER_CHANNEL, chan[c.chan].phaseInv);
break;
case DIV_CMD_C64_FINE_CUTOFF:
chan[c.chan].filt[c.value2].cutoff = (c.value & 0xfff) << 4;
updateFilter(c.chan, c.value2);
break;
case DIV_CMD_C64_RESONANCE:
chan[c.chan].filt[c.value2].resonance = c.value & 0xff;
updateFilter(c.chan, c.value2);
break;
case DIV_CMD_SID3_FILTER_OUTPUT_VOLUME:
chan[c.chan].filt[c.value2].output_volume = c.value & 0xff;
updateFilter(c.chan, c.value2);
break;
case DIV_CMD_SID3_FILTER_DISTORTION:
chan[c.chan].filt[c.value2].distortion_level = c.value & 0xff;
updateFilter(c.chan, c.value2);
break;
case DIV_CMD_C64_FILTER_MODE:
chan[c.chan].filt[(c.value >> 4) & 3].mode &= ~(SID3_FILTER_LP | SID3_FILTER_HP | SID3_FILTER_BP);
if(c.value & 1) chan[c.chan].filt[(c.value >> 4) & 3].mode |= SID3_FILTER_LP;
if(c.value & 2) chan[c.chan].filt[(c.value >> 4) & 3].mode |= SID3_FILTER_BP;
if(c.value & 4) chan[c.chan].filt[(c.value >> 4) & 3].mode |= SID3_FILTER_HP;
updateFilter(c.chan, (c.value >> 4) & 3);
break;
case DIV_CMD_SID3_FILTER_CONNECTION:
chan[c.chan].filt[(c.value >> 4) & 3].mode &= ~(SID3_FILTER_CHANNEL_INPUT | SID3_FILTER_OUTPUT);
if(c.value & 1) chan[c.chan].filt[(c.value >> 4) & 3].mode |= SID3_FILTER_CHANNEL_INPUT;
if(c.value & 2) chan[c.chan].filt[(c.value >> 4) & 3].mode |= SID3_FILTER_OUTPUT;
updateFilter(c.chan, (c.value >> 4) & 3);
break;
case DIV_CMD_SID3_FILTER_MATRIX:
chan[c.chan].filt[(c.value >> 4) & 3].filter_matrix = c.value & 0xf;
updateFilter(c.chan, (c.value >> 4) & 3);
break;
case DIV_CMD_SID3_FILTER_ENABLE:
chan[c.chan].filt[(c.value >> 4) & 3].enabled = c.value & 1;
updateFilter(c.chan, (c.value >> 4) & 3);
break;
case DIV_CMD_C64_PW_SLIDE:
chan[c.chan].pw_slide = c.value * c.value2 * 16;
break;
case DIV_CMD_C64_CUTOFF_SLIDE:
filter = abs(c.value2) - 1;
chan[c.chan].filt[filter].cutoff_slide = c.value * (c.value2 > 0 ? 1 : -1) * 16;
break;
case DIV_CMD_SID3_PHASE_RESET:
chan[c.chan].phase_reset_counter = c.value;
break;
case DIV_CMD_SID3_NOISE_PHASE_RESET:
chan[c.chan].noise_phase_reset_counter = c.value;
break;
case DIV_CMD_SID3_ENVELOPE_RESET:
chan[c.chan].envelope_reset_counter = c.value;
break;
case DIV_CMD_SAMPLE_POS:
chan[c.chan].dacPos=c.value;
break;
case DIV_CMD_MACRO_OFF:
chan[c.chan].std.mask(c.value,true);
break;
case DIV_CMD_MACRO_ON:
chan[c.chan].std.mask(c.value,false);
break;
case DIV_CMD_MACRO_RESTART:
chan[c.chan].std.restart(c.value);
break;
default:
break;
}
if(updEnv)
{
updateEnvelope(c.chan);
}
return 1;
}
void DivPlatformSID3::muteChannel(int ch, bool mute) {
isMuted[ch]=mute;
sid3_set_is_muted(sid3,ch,mute);
}
void DivPlatformSID3::forceIns() {
for (int i=0; i<SID3_NUM_CHANNELS; i++) {
chan[i].insChanged=true;
if (chan[i].active) {
chan[i].keyOn=true;
chan[i].freqChanged=true;
}
//updateFilter(i);
}
}
void DivPlatformSID3::notifyInsChange(int ins) {
for (int i=0; i<SID3_NUM_CHANNELS; i++) {
if (chan[i].ins==ins) {
chan[i].insChanged=true;
}
}
}
void DivPlatformSID3::notifyWaveChange(int wave)
{
if (chan[SID3_NUM_CHANNELS - 1].wavetable==wave)
{
ws.changeWave1(wave, false);
updateWave();
}
}
void DivPlatformSID3::notifyInsDeletion(void* ins) {
for (int i=0; i<SID3_NUM_CHANNELS; i++) {
chan[i].std.notifyInsDeletion((DivInstrument*)ins);
}
}
void* DivPlatformSID3::getChanState(int ch) {
return &chan[ch];
}
DivMacroInt* DivPlatformSID3::getChanMacroInt(int ch) {
return &chan[ch].std;
}
DivChannelModeHints DivPlatformSID3::getModeHints(int ch) {
DivChannelModeHints ret;
ret.count=1;
ret.hint[0]=ICON_FA_BELL_SLASH_O;
ret.type[0]=0;
if (!chan[ch].gate) {
ret.type[0]=4;
}
return ret;
}
DivDispatchOscBuffer* DivPlatformSID3::getOscBuffer(int ch) {
return oscBuf[ch];
}
unsigned char* DivPlatformSID3::getRegisterPool() {
return regPool;
}
int DivPlatformSID3::getRegisterPoolSize() {
return SID3_NUM_REGISTERS;
}
float DivPlatformSID3::getPostAmp() {
return 1.0f;
}
void DivPlatformSID3::reset() {
while (!writes.empty()) writes.pop();
for (int i=0; i<SID3_NUM_CHANNELS; i++) {
chan[i]=DivPlatformSID3::Channel();
chan[i].std.setEngine(parent);
chan[i].vol = SID3_MAX_VOL;
for(int j = 0; j < SID3_NUM_FILTERS; j++)
{
chan[i].filt[j].enabled = false;
updateFilter(i, j);
chan[i].filt[j].cutoff_slide = 0;
}
chan[i].panLeft = chan[i].panRight = 0xff;
chan[i].freq = chan[i].noiseFreq = 0;
updatePanning(i);
chan[i].noiseLFSRMask = (1 << 29) | (1 << 5) | (1 << 3) | 1; //https://docs.amd.com/v/u/en-US/xapp052 for 30 bits: 30, 6, 4, 1
chan[i].pw_slide = 0;
chan[i].phase_reset_counter = -1;
chan[i].noise_phase_reset_counter = -1;
chan[i].envelope_reset_counter = -1;
}
sampleTick = 0;
updateSample = false;
ws.setEngine(parent);
ws.init(NULL,256,255,false);
sid3_reset(sid3);
memset(regPool,0,SID3_NUM_REGISTERS);
}
int DivPlatformSID3::getOutputCount() {
return 2;
}
bool DivPlatformSID3::getDCOffRequired()
{
return false;
}
void DivPlatformSID3::poke(unsigned int addr, unsigned short val) {
rWrite(addr,val);
}
void DivPlatformSID3::poke(std::vector<DivRegWrite>& wlist) {
for (DivRegWrite& i: wlist) rWrite(i.addr,i.val);
}
void DivPlatformSID3::setFlags(const DivConfig& flags) {
chipClock=1000000;
CHECK_CUSTOM_CLOCK;
quarterClock=flags.getBool("quarterClock",false);
if(quarterClock && chipClock >= 1000000 && !parent->isExporting())
{
chipClock /= 4;
}
rate=chipClock;
sid3_set_clock_rate(sid3, chipClock);
for (int i=0; i<SID3_NUM_CHANNELS; i++) {
oscBuf[i]->rate=rate/8;
}
}
void DivPlatformSID3::getPaired(int ch, std::vector<DivChannelPair>& ret)
{
if(chan[ch].phase)
{
ret.push_back(DivChannelPair(_("phase"), chan[ch].phaseSrc));
}
if(chan[ch].ring)
{
if(chan[ch].ringSrc == SID3_NUM_CHANNELS)
{
ret.push_back(DivChannelPair(_("ring"), ch));
}
else
{
ret.push_back(DivChannelPair(_("ring"), chan[ch].ringSrc));
}
}
if(chan[ch].sync)
{
ret.push_back(DivChannelPair(_("sync"), chan[ch].syncSrc));
}
}
int DivPlatformSID3::init(DivEngine* p, int channels, int sugRate, const DivConfig& flags) {
parent=p;
dumpWrites=false;
skipRegisterWrites=false;
writeOscBuf=0;
for (int i=0; i<SID3_NUM_CHANNELS; i++)
{
isMuted[i]=false;
oscBuf[i]=new DivDispatchOscBuffer;
}
sid3 = sid3_create();
setFlags(flags);
reset();
return SID3_NUM_CHANNELS;
}
void DivPlatformSID3::quit() {
for (int i=0; i<SID3_NUM_CHANNELS; i++)
{
delete oscBuf[i];
}
if (sid3!=NULL)
{
sid3_free(sid3);
sid3 = NULL;
}
}
DivPlatformSID3::~DivPlatformSID3() {
}