furnace/src/engine/platform/gbaminmod.cpp
2024-04-01 04:06:32 +07:00

783 lines
25 KiB
C++

/**
* Furnace Tracker - multi-system chiptune tracker
* Copyright (C) 2021-2023 tildearrow and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "gbaminmod.h"
#include "../engine.h"
#include "../../ta-log.h"
#include <math.h>
#define CHIP_FREQBASE 16777216
#define rWrite(a,v) {regPool[a]=v;}
const char* regCheatSheetMinMod[]={
"CHx_Counter", "x0",
"CHx_Address", "x2",
"CHx_LastLeft", "x4",
"CHx_LastRight", "x6",
"CHx_Freq", "x8",
"CHx_LoopEnd", "xA",
"CHx_LoopStart", "xC",
"CHx_VolumeLeft", "xE",
"CHx_VolumeRight", "xF",
NULL
};
const char** DivPlatformGBAMinMod::getRegisterSheet() {
return regCheatSheetMinMod;
}
void DivPlatformGBAMinMod::acquire(short** buf, size_t len) {
size_t sampPos=mixBufReadPos&3;
bool newSamp=false;
// cache channel registers that might change
struct {
uint64_t address;
unsigned int freq, loopEnd, loopStart;
short volL, volR;
} chState[16];
for (int i=0; i<chanMax; i++) {
unsigned short* chReg=&regPool[i*16];
chState[i].address=chReg[0]|((uint64_t)chReg[1]<<16)|((uint64_t)chReg[2]<<32)|((uint64_t)chReg[3]<<48);
chState[i].freq=chReg[8]|((unsigned int)chReg[9]<<16);
chState[i].loopEnd=chReg[10]|((unsigned int)chReg[11]<<16);
chState[i].loopStart=chReg[12]|((unsigned int)chReg[13]<<16);
chState[i].volL=(short)chReg[14];
chState[i].volR=(short)chReg[15];
}
for (size_t h=0; h<len; h++) {
while (sampTimer>=sampCycles) {
// the driver generates 4 samples at a time and can be start-offset
sampPos=mixBufReadPos&3;
if (sampPos==mixBufOffset) {
for (size_t j=mixBufOffset; j<4; j++) {
mixOut[0][j]=0;
mixOut[1][j]=0;
}
for (int i=0; i<chanMax; i++) {
for (size_t j=mixBufOffset; j<4; j++) {
unsigned int lastAddr=chState[i].address>>32;
chState[i].address+=((uint64_t)chState[i].freq)<<8;
unsigned int newAddr=chState[i].address>>32;
if (newAddr!=lastAddr) {
if (newAddr>=chState[i].loopEnd) {
newAddr=newAddr-chState[i].loopEnd+chState[i].loopStart;
chState[i].address=(chState[i].address&0xffffffff)|((uint64_t)newAddr<<32);
}
int newSamp=0;
switch (newAddr>>24) {
case 2: // wavetable
newAddr&=0x0003ffff;
if (newAddr<sizeof(wtMem)) {
newSamp=wtMem[newAddr];
}
break;
case 3: // echo
newAddr&=0x00007fff;
if (newAddr>0x800) {
newSamp=mixBuf[(newAddr-0x800)/1024][newAddr&1023];
}
break;
case 8: // sample
case 9:
case 10:
case 11:
case 12:
newSamp=sampleMem[newAddr&0x01ffffff];
break;
}
chanOut[i][0]=newSamp*chState[i].volL;
chanOut[i][1]=newSamp*chState[i].volR;
}
int outL=chanOut[i][0];
int outR=chanOut[i][1];
int outA=(chan[i].invertL==chan[i].invertR)?outL+outR:outL-outR;
mixOut[0][j]+=(unsigned char)(outL>>15);
mixOut[1][j]+=(unsigned char)(outR>>15);
oscOut[i][j]=volScale>0?outA*64/volScale:0;
}
}
for (size_t j=mixBufOffset; j<4; j++) {
mixBuf[mixBufPage][mixBufWritePos]=mixOut[0][j];
mixBuf[mixBufPage+1][mixBufWritePos]=mixOut[1][j];
mixBufWritePos++;
}
mixBufOffset=0;
}
newSamp=true;
mixBufReadPos++;
sampTimer-=sampCycles;
}
if (newSamp) {
// assuming max PCM FIFO volume
sampL=((short)mixOut[0][sampPos]<<8)&(0xff80<<(9-dacDepth));
sampR=((short)mixOut[1][sampPos]<<8)&(0xff80<<(9-dacDepth));
newSamp=false;
}
buf[0][h]=sampL;
buf[1][h]=sampR;
for (int i=0; i<chanMax; i++) {
oscBuf[i]->data[oscBuf[i]->needle++]=oscOut[i][sampPos];
}
for (int i=chanMax; i<16; i++) {
oscBuf[i]->data[oscBuf[i]->needle++]=0;
}
while (updTimer>=updCycles) {
// flip buffer
// logV("ut=%d,pg=%d,w=%d,r=%d,sc=%d,st=%d",updTimer,mixBufPage,mixBufWritePos,mixBufReadPos,sampCycles,sampTimer);
mixMemCompo.entries[mixBufPage].end=mixMemCompo.entries[mixBufPage].begin+mixBufWritePos;
mixMemCompo.entries[mixBufPage+1].end=mixMemCompo.entries[mixBufPage+1].begin+mixBufWritePos;
mixBufPage=(mixBufPage+2)%(mixBufs*2);
memset(mixBuf[mixBufPage],0,sizeof(mixBuf[mixBufPage]));
memset(mixBuf[mixBufPage+1],0,sizeof(mixBuf[mixBufPage+1]));
// emulate buffer loss prevention and buffer copying
sampsRendered+=mixBufReadPos;
mixBufOffset=mixBufWritePos-mixBufReadPos;
for (size_t j=0; j<mixBufOffset; j++) {
mixOut[0][j]=mixOut[0][(mixBufReadPos&3)+j];
mixOut[1][j]=mixOut[1][(mixBufReadPos&3)+j];
mixBuf[mixBufPage][j]=mixOut[0][j];
mixBuf[mixBufPage+1][j]=mixOut[1][j];
}
mixBufReadPos=0;
mixBufWritePos=mixBufOffset;
// check for echo channels and give them proper addresses
for (int i=0; i<chanMax; i++) {
unsigned char echoDelay=MIN(chan[i].echo&0x0f,mixBufs-1);
if(echoDelay) {
echoDelay=echoDelay*2-((chan[i].echo&0x10)?0:1);
size_t echoPage=(mixBufPage+mixBufs*2-echoDelay)%(mixBufs*2);
chState[i].address=(0x03000800ULL+echoPage*1024)<<32;
chState[i].loopStart=0-echoDelay;
chState[i].loopEnd=0-echoDelay;
}
}
updTimer-=updCycles;
updCyclesTotal+=updCycles;
// recalculate update timer from a new tick rate
float hz=parent->getCurHz();
float updCyclesNew=(hz>=1)?(16777216.f/hz):1;
// the maximum buffer size in the default multi-rate config is 1024 samples
// (so 15 left/right buffers + mixer code fit the entire 32k of internal RAM)
// if the driver determines that the current tick rate is too low, it will
// internally double the rate until the resulting buffer size fits
while (true) {
updCycles=floorf(updCyclesNew);
// emulate prescaler rounding
if (updCycles>=65536*256) {
updCycles&=~1024;
} else if (updCycles>=65536*64) {
updCycles&=~256;
} else if (updCycles>=65536) {
updCycles&=~64;
}
unsigned int bufSize=(updCycles/sampCycles+3)&~3;
if (bufSize<1024 || updCyclesNew<1) {
break;
}
updCyclesNew/=2;
}
}
updTimer+=1<<dacDepth;
sampTimer+=1<<dacDepth;
}
// write back changed cached channel registers
for (int i=0; i<chanMax; i++) {
unsigned short* chReg=&regPool[i*16];
chReg[0]=chState[i].address&0xffff;
chReg[1]=(chState[i].address>>16)&0xffff;
chReg[2]=(chState[i].address>>32)&0xffff;
chReg[3]=(chState[i].address>>48)&0xffff;
chReg[4]=(chanOut[i][0]>>7)&0xff00;
chReg[5]=0;
chReg[6]=(chanOut[i][1]>>7)&0xff00;
chReg[7]=0;
chReg[10]=chState[i].loopEnd&0xffff;
chReg[11]=(chState[i].loopEnd>>16)&0xffff;
chReg[12]=chState[i].loopStart&0xffff;
chReg[13]=(chState[i].loopStart>>16)&0xffff;
}
}
void DivPlatformGBAMinMod::tick(bool sysTick) {
// collect stats for display in chip config
// logV("rendered=%d,updTot=%d",sampsRendered,updCyclesTotal);
if (sysTick && updCyclesTotal>0) {
// assuming new sample, L!=R and lowest ROM access wait in all channels
// this gives 39.5 cycles/sample, rounded up to 40 for loops
maxCPU=(float)sampsRendered*chanMax*40/(float)updCyclesTotal;
}
sampsRendered=0;
updCyclesTotal=0;
for (int i=0; i<chanMax; i++) {
chan[i].std.next();
if (chan[i].std.vol.had) {
chan[i].outVol=(chan[i].vol*MIN(chan[i].macroVolMul,chan[i].std.vol.val))/chan[i].macroVolMul;
chan[i].volChangedL=true;
chan[i].volChangedR=true;
}
if (NEW_ARP_STRAT) {
chan[i].handleArp();
} else if (chan[i].std.arp.had) {
if (!chan[i].inPorta) {
chan[i].baseFreq=NOTE_FREQUENCY(parent->calcArp(chan[i].note,chan[i].std.arp.val));
}
chan[i].freqChanged=true;
}
if (chan[i].useWave && chan[i].std.wave.had) {
if (chan[i].wave!=chan[i].std.wave.val || chan[i].ws.activeChanged()) {
chan[i].wave=chan[i].std.wave.val;
chan[i].ws.changeWave1(chan[i].wave);
}
}
if (chan[i].std.pitch.had) {
if (chan[i].std.pitch.mode) {
chan[i].pitch2+=chan[i].std.pitch.val;
CLAMP_VAR(chan[i].pitch2,-32768,32767);
} else {
chan[i].pitch2=chan[i].std.pitch.val;
}
chan[i].freqChanged=true;
}
if (chan[i].std.panL.had) {
chan[i].chPanL=(255*(chan[i].std.panL.val&255))/chan[i].macroPanMul;
chan[i].volChangedL=true;
}
if (chan[i].std.panR.had) {
chan[i].chPanR=(255*(chan[i].std.panR.val&255))/chan[i].macroPanMul;
chan[i].volChangedR=true;
}
if (chan[i].std.phaseReset.had) {
if ((chan[i].std.phaseReset.val==1) && chan[i].active) {
chan[i].audPos=0;
chan[i].setPos=true;
}
}
if (chan[i].std.ex1.had) {
if (chan[i].invertL!=(bool)(chan[i].std.ex1.val&16)) {
chan[i].invertL=chan[i].std.ex1.val&2;
chan[i].volChangedL=true;
}
if (chan[i].invertR!=(bool)(chan[i].std.ex1.val&8)) {
chan[i].invertR=chan[i].std.ex1.val&1;
chan[i].volChangedR=true;
}
}
if (chan[i].setPos) {
// force keyon
chan[i].keyOn=true;
chan[i].setPos=false;
} else {
chan[i].audPos=0;
}
if (chan[i].useWave && chan[i].active) {
if (chan[i].ws.tick()) {
updateWave(i);
}
}
if (chan[i].freqChanged || chan[i].keyOn || chan[i].keyOff) {
DivSample* s=parent->getSample(chan[i].sample);
double off=(s->centerRate>=1)?((double)s->centerRate/8363.0):1.0;
chan[i].freq=(int)(off*parent->calcFreq(chan[i].baseFreq,chan[i].pitch,chan[i].fixedArp?chan[i].baseNoteOverride:chan[i].arpOff,chan[i].fixedArp,false,2,chan[i].pitch2,chipClock,CHIP_FREQBASE));
if (chan[i].keyOn) {
unsigned int start, end, loop;
if ((chan[i].echo&0xf)!=0) {
// make sure echo channels' frequency can't be faster than the sample rate
if (chan[i].freq>CHIP_FREQBASE) {
chan[i].freq=CHIP_FREQBASE;
}
// this is only to match the HLE implementation
// the actual engine will handle mid-frame echo switch differently
start=loop=0x08000000;
end=0x08000001;
} else if (chan[i].useWave) {
start=(i*256)|0x02000000;
end=start+chan[i].wtLen;
loop=start;
} else {
size_t maxPos=getSampleMemCapacity();
start=sampleOff[chan[i].sample];
if (s->isLoopable()) {
end=MIN(start+MAX(s->loopEnd,1),maxPos);
loop=start+s->loopStart;
} else {
end=MIN(start+s->length8+16,maxPos);
loop=MIN(start+s->length8,maxPos);
}
if (chan[i].audPos>0) {
start=start+MIN(chan[i].audPos,end);
}
start|=0x08000000;
end|=0x08000000;
loop|=0x08000000;
}
rWrite(2+i*16,start&0xffff);
rWrite(3+i*16,start>>16);
rWrite(10+i*16,end&0xffff);
rWrite(11+i*16,end>>16);
rWrite(12+i*16,loop&0xffff);
rWrite(13+i*16,loop>>16);
if (!chan[i].std.vol.had) {
chan[i].outVol=chan[i].vol;
}
chan[i].volChangedL=true;
chan[i].volChangedR=true;
chan[i].keyOn=false;
}
if (chan[i].keyOff) {
chan[i].volChangedL=true;
chan[i].volChangedR=true;
chan[i].keyOff=false;
}
if (chan[i].freqChanged) {
rWrite(8+i*16,chan[i].freq&0xffff);
rWrite(9+i*16,chan[i].freq>>16);
chan[i].freqChanged=false;
}
}
// don't scale echo channels
if (chan[i].volChangedL) {
int out=chan[i].outVol*chan[i].chPanL;
if ((chan[i].echo&0xf)==0) out=(out*volScale)>>16;
else out=out>>1;
if (chan[i].invertL) out=-out;
rWrite(14+i*16,(isMuted[i] || !chan[i].active)?0:out);
chan[i].volChangedL=false;
}
if (chan[i].volChangedR) {
int out=chan[i].outVol*chan[i].chPanR;
if ((chan[i].echo&0xf)==0) out=(out*volScale)>>16;
else out=out>>1;
if (chan[i].invertR) out=-out;
rWrite(15+i*16,(isMuted[i] || !chan[i].active)?0:out);
chan[i].volChangedR=false;
}
}
}
int DivPlatformGBAMinMod::dispatch(DivCommand c) {
switch (c.cmd) {
case DIV_CMD_NOTE_ON: {
DivInstrument* ins=parent->getIns(chan[c.chan].ins,DIV_INS_AMIGA);
chan[c.chan].macroVolMul=ins->type==DIV_INS_AMIGA?64:255;
chan[c.chan].macroPanMul=ins->type==DIV_INS_AMIGA?127:255;
if (ins->amiga.useWave) {
chan[c.chan].useWave=true;
chan[c.chan].wtLen=ins->amiga.waveLen+1;
if (c.chan<chanMax) {
wtMemCompo.entries[c.chan].end=wtMemCompo.entries[c.chan].begin+chan[c.chan].wtLen;
}
if (chan[c.chan].insChanged) {
if (chan[c.chan].wave<0) {
chan[c.chan].wave=0;
}
chan[c.chan].ws.setWidth(chan[c.chan].wtLen);
chan[c.chan].ws.changeWave1(chan[c.chan].wave);
}
chan[c.chan].ws.init(ins,chan[c.chan].wtLen,255,chan[c.chan].insChanged);
} else {
if (c.value!=DIV_NOTE_NULL) {
chan[c.chan].sample=ins->amiga.getSample(c.value);
c.value=ins->amiga.getFreq(c.value);
}
chan[c.chan].useWave=false;
}
if (chan[c.chan].useWave || chan[c.chan].sample<0 || chan[c.chan].sample>=parent->song.sampleLen) {
chan[c.chan].sample=-1;
}
if (c.value!=DIV_NOTE_NULL) {
chan[c.chan].baseFreq=round(NOTE_FREQUENCY(c.value));
chan[c.chan].freqChanged=true;
chan[c.chan].note=c.value;
}
chan[c.chan].active=true;
chan[c.chan].keyOn=true;
chan[c.chan].macroInit(ins);
if (!parent->song.brokenOutVol && !chan[c.chan].std.vol.will) {
chan[c.chan].outVol=chan[c.chan].vol;
}
break;
}
case DIV_CMD_NOTE_OFF:
chan[c.chan].sample=-1;
chan[c.chan].active=false;
chan[c.chan].keyOff=true;
chan[c.chan].macroInit(NULL);
break;
case DIV_CMD_NOTE_OFF_ENV:
case DIV_CMD_ENV_RELEASE:
chan[c.chan].std.release();
break;
case DIV_CMD_INSTRUMENT:
if (chan[c.chan].ins!=c.value || c.value2==1) {
chan[c.chan].ins=c.value;
}
break;
case DIV_CMD_VOLUME:
chan[c.chan].vol=c.value;
if (!chan[c.chan].std.vol.has) {
chan[c.chan].outVol=c.value;
}
chan[c.chan].volChangedL=true;
chan[c.chan].volChangedR=true;
break;
case DIV_CMD_GET_VOLUME:
if (chan[c.chan].std.vol.has) {
return chan[c.chan].vol;
}
return chan[c.chan].outVol;
break;
case DIV_CMD_SNES_INVERT:
chan[c.chan].invertL=(c.value>>4);
chan[c.chan].invertR=c.value&15;
chan[c.chan].volChangedL=true;
chan[c.chan].volChangedR=true;
break;
case DIV_CMD_PANNING:
chan[c.chan].chPanL=c.value;
chan[c.chan].chPanR=c.value2;
chan[c.chan].volChangedL=true;
chan[c.chan].volChangedR=true;
break;
case DIV_CMD_PITCH:
chan[c.chan].pitch=c.value;
chan[c.chan].freqChanged=true;
break;
case DIV_CMD_WAVE:
if (!chan[c.chan].useWave) break;
chan[c.chan].wave=c.value;
chan[c.chan].ws.changeWave1(chan[c.chan].wave);
break;
case DIV_CMD_NOTE_PORTA: {
int destFreq=NOTE_FREQUENCY(c.value2);
bool return2=false;
if (destFreq>chan[c.chan].baseFreq) {
chan[c.chan].baseFreq+=c.value;
if (chan[c.chan].baseFreq>=destFreq) {
chan[c.chan].baseFreq=destFreq;
return2=true;
}
} else {
chan[c.chan].baseFreq-=c.value;
if (chan[c.chan].baseFreq<=destFreq) {
chan[c.chan].baseFreq=destFreq;
return2=true;
}
}
chan[c.chan].freqChanged=true;
if (return2) {
chan[c.chan].inPorta=false;
return 2;
}
break;
}
case DIV_CMD_LEGATO: {
chan[c.chan].baseFreq=NOTE_FREQUENCY(c.value+((HACKY_LEGATO_MESS)?(chan[c.chan].std.arp.val-12):(0)));
chan[c.chan].freqChanged=true;
chan[c.chan].note=c.value;
break;
}
case DIV_CMD_PRE_PORTA:
if (chan[c.chan].active && c.value2) {
if (parent->song.resetMacroOnPorta) chan[c.chan].macroInit(parent->getIns(chan[c.chan].ins,DIV_INS_AMIGA));
}
if (!chan[c.chan].inPorta && c.value && !parent->song.brokenPortaArp && chan[c.chan].std.arp.will && !NEW_ARP_STRAT) chan[c.chan].baseFreq=NOTE_FREQUENCY(chan[c.chan].note);
chan[c.chan].inPorta=c.value;
break;
case DIV_CMD_SAMPLE_POS:
chan[c.chan].audPos=c.value;
chan[c.chan].setPos=true;
break;
case DIV_CMD_MINMOD_ECHO:
chan[c.chan].echo=c.value;
break;
case DIV_CMD_GET_VOLMAX:
return 255;
break;
case DIV_CMD_MACRO_OFF:
chan[c.chan].std.mask(c.value,true);
break;
case DIV_CMD_MACRO_ON:
chan[c.chan].std.mask(c.value,false);
break;
case DIV_CMD_MACRO_RESTART:
chan[c.chan].std.restart(c.value);
break;
default:
break;
}
return 1;
}
void DivPlatformGBAMinMod::updateWave(int ch) {
int addr=ch*256;
for (unsigned int i=0; i<chan[ch].wtLen; i++) {
wtMem[addr+i]=(signed char)(chan[ch].ws.output[i]-128);
}
}
void DivPlatformGBAMinMod::muteChannel(int ch, bool mute) {
isMuted[ch]=mute;
chan[ch].volChangedL=true;
chan[ch].volChangedR=true;
}
void DivPlatformGBAMinMod::forceIns() {
for (int i=0; i<chanMax; i++) {
chan[i].insChanged=true;
chan[i].volChangedL=true;
chan[i].volChangedR=true;
chan[i].sample=-1;
chan[i].active=false;
}
}
void* DivPlatformGBAMinMod::getChanState(int ch) {
return &chan[ch];
}
DivMacroInt* DivPlatformGBAMinMod::getChanMacroInt(int ch) {
return &chan[ch].std;
}
unsigned short DivPlatformGBAMinMod::getPan(int ch) {
return (chan[ch].chPanL<<8)|(chan[ch].chPanR);
}
DivSamplePos DivPlatformGBAMinMod::getSamplePos(int ch) {
if (ch>=chanMax ||
chan[ch].sample<0 || chan[ch].sample>=parent->song.sampleLen ||
!chan[ch].active || (chan[ch].echo&0xf)!=0
) {
return DivSamplePos();
}
return DivSamplePos(
chan[ch].sample,
(((int)regPool[ch*16+2]|((int)regPool[ch*16+3]<<16))&0x01ffffff)-sampleOff[chan[ch].sample],
(int64_t)chan[ch].freq*chipClock/CHIP_FREQBASE
);
}
DivDispatchOscBuffer* DivPlatformGBAMinMod::getOscBuffer(int ch) {
return oscBuf[ch];
}
void DivPlatformGBAMinMod::reset() {
resetMixer();
memset(regPool,0,sizeof(regPool));
memset(wtMem,0,sizeof(wtMem));
for (int i=0; i<16; i++) {
chan[i]=DivPlatformGBAMinMod::Channel();
chan[i].std.setEngine(parent);
chan[i].ws.setEngine(parent);
chan[i].ws.init(NULL,32,255);
}
}
void DivPlatformGBAMinMod::resetMixer() {
sampTimer=sampCycles;
updTimer=0;
updCycles=0;
mixBufReadPos=0;
mixBufWritePos=0;
mixBufPage=0;
mixBufOffset=0;
sampsRendered=0;
sampL=0;
sampR=0;
memset(mixBuf,0,sizeof(mixBuf));
memset(chanOut,0,sizeof(chanOut));
}
int DivPlatformGBAMinMod::getOutputCount() {
return 2;
}
void DivPlatformGBAMinMod::notifyInsChange(int ins) {
for (int i=0; i<16; i++) {
if (chan[i].ins==ins) {
chan[i].insChanged=true;
}
}
}
void DivPlatformGBAMinMod::notifyWaveChange(int wave) {
for (int i=0; i<16; i++) {
if (chan[i].useWave && chan[i].wave==wave) {
chan[i].ws.changeWave1(wave);
updateWave(i);
}
}
}
void DivPlatformGBAMinMod::notifyInsDeletion(void* ins) {
for (int i=0; i<16; i++) {
chan[i].std.notifyInsDeletion((DivInstrument*)ins);
}
}
void DivPlatformGBAMinMod::poke(unsigned int addr, unsigned short val) {
rWrite(addr,val);
}
void DivPlatformGBAMinMod::poke(std::vector<DivRegWrite>& wlist) {
for (DivRegWrite& i: wlist) rWrite(i.addr,i.val);
}
unsigned char* DivPlatformGBAMinMod::getRegisterPool() {
return (unsigned char*)regPool;
}
int DivPlatformGBAMinMod::getRegisterPoolSize() {
return 256;
}
int DivPlatformGBAMinMod::getRegisterPoolDepth() {
return 16;
}
const void* DivPlatformGBAMinMod::getSampleMem(int index) {
return index == 0 ? sampleMem : NULL;
}
size_t DivPlatformGBAMinMod::getSampleMemCapacity(int index) {
return index == 0 ? 33554432 : 0;
}
size_t DivPlatformGBAMinMod::getSampleMemUsage(int index) {
return index == 0 ? sampleMemLen : 0;
}
bool DivPlatformGBAMinMod::isSampleLoaded(int index, int sample) {
if (index!=0) return false;
if (sample<0 || sample>255) return false;
return sampleLoaded[sample];
}
const DivMemoryComposition* DivPlatformGBAMinMod::getMemCompo(int index) {
switch (index) {
case 0: return &romMemCompo;
case 1: return &wtMemCompo;
case 2: return &mixMemCompo;
}
return NULL;
}
void DivPlatformGBAMinMod::renderSamples(int sysID) {
size_t maxPos=getSampleMemCapacity();
memset(sampleMem,0,maxPos);
romMemCompo.entries.clear();
romMemCompo.capacity=maxPos;
// dummy zero-length samples are at pos 0 as the engine still outputs them
size_t memPos=1;
for (int i=0; i<parent->song.sampleLen; i++) {
DivSample* s=parent->song.sample[i];
if (!s->renderOn[0][sysID]) {
sampleOff[i]=0;
continue;
}
int length=s->length8;
int actualLength=MIN((int)(maxPos-memPos),length);
if (actualLength>0) {
sampleOff[i]=memPos;
memcpy(&sampleMem[memPos],s->data8,actualLength);
memPos+=actualLength;
romMemCompo.entries.push_back(DivMemoryEntry(DIV_MEMORY_SAMPLE,"PCM",i,sampleOff[i],memPos));
// if it's one-shot, add 16 silent samples for looping area
// this should be enough for most cases even though the
// frequency register can make position jump by up to 256 samples
if (!s->isLoopable()) {
int oneShotLen=MIN((int)maxPos-memPos,16);
memset(&sampleMem[memPos],0,oneShotLen);
memPos+=oneShotLen;
}
}
if (actualLength<length) {
logW("out of GBA MinMod PCM memory for sample %d!",i);
break;
}
sampleLoaded[i]=true;
}
sampleMemLen=memPos;
romMemCompo.used=sampleMemLen;
}
void DivPlatformGBAMinMod::setFlags(const DivConfig& flags) {
volScale=flags.getInt("volScale",4096);
mixBufs=flags.getInt("mixBufs",15);
dacDepth=flags.getInt("dacDepth",9);
chanMax=flags.getInt("channels",16);
rate=16777216>>dacDepth;
for (int i=0; i<16; i++) {
oscBuf[i]->rate=rate;
}
sampCycles=16777216/flags.getInt("sampRate",21845);
chipClock=16777216/sampCycles;
resetMixer();
wtMemCompo.used=256*chanMax;
mixMemCompo.used=2048*mixBufs;
wtMemCompo.entries.clear();
mixMemCompo.entries.clear();
for (int i=0; i<chanMax; i++) {
wtMemCompo.entries.push_back(DivMemoryEntry(DIV_MEMORY_WAVE_RAM, fmt::sprintf("Channel %d",i),-1,i*256,i*256));
}
for (int i=0; i<(int)mixBufs; i++) {
mixMemCompo.entries.push_back(DivMemoryEntry(DIV_MEMORY_ECHO, fmt::sprintf("Buffer %d Left",i),-1,i*2048,i*2048));
mixMemCompo.entries.push_back(DivMemoryEntry(DIV_MEMORY_ECHO, fmt::sprintf("Buffer %d Right",i),-1,i*2048+1024,i*2048+1024));
}
}
int DivPlatformGBAMinMod::init(DivEngine* p, int channels, int sugRate, const DivConfig& flags) {
parent=p;
dumpWrites=false;
skipRegisterWrites=false;
for (int i=0; i<16; i++) {
isMuted[i]=false;
oscBuf[i]=new DivDispatchOscBuffer;
}
sampleMem=new signed char[getSampleMemCapacity()];
sampleMemLen=0;
romMemCompo=DivMemoryComposition();
romMemCompo.name="Sample ROM";
wtMemCompo=DivMemoryComposition();
wtMemCompo.name="Wavetable RAM";
wtMemCompo.capacity=256*16;
wtMemCompo.memory=(unsigned char*)wtMem;
wtMemCompo.waveformView=DIV_MEMORY_WAVE_8BIT_SIGNED;
mixMemCompo=DivMemoryComposition();
mixMemCompo.name="Mix/Echo Buffer";
mixMemCompo.capacity=2048*15;
mixMemCompo.memory=(unsigned char*)mixBuf;
mixMemCompo.waveformView=DIV_MEMORY_WAVE_8BIT_SIGNED;
setFlags(flags);
reset();
return 16;
}
void DivPlatformGBAMinMod::quit() {
delete[] sampleMem;
for (int i=0; i<16; i++) {
delete oscBuf[i];
}
}