289 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			289 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * Generic128d added by Romain Dolbeau, and turned into simd-generic128.h
 | |
|  * with single & double precision by Erik Lindahl.
 | |
|  * Romain Dolbeau hereby places his modifications in the public domain.
 | |
|  * Erik Lindahl hereby places his modifications in the public domain.
 | |
|  * 
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| 
 | |
| #if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
 | |
| #  error "Generic simd128 only works in single or double precision"
 | |
| #endif
 | |
| 
 | |
| #define SIMD_SUFFIX  _generic_simd128  /* for renaming */
 | |
| 
 | |
| #ifdef FFTW_SINGLE
 | |
| #  define DS(d,s) s /* single-precision option */
 | |
| #  define VDUPL(x) (V){x[0],x[0],x[2],x[2]}
 | |
| #  define VDUPH(x) (V){x[1],x[1],x[3],x[3]}
 | |
| #  define DVK(var, val) V var = {val,val,val,val}
 | |
| #else
 | |
| #  define DS(d,s) d /* double-precision option */
 | |
| #  define VDUPL(x) (V){x[0],x[0]}
 | |
| #  define VDUPH(x) (V){x[1],x[1]}
 | |
| #  define DVK(var, val) V var = {val, val}
 | |
| #endif
 | |
| 
 | |
| #define VL DS(1,2)         /* SIMD vector length, in term of complex numbers */
 | |
| #define SIMD_VSTRIDE_OKA(x) DS(SIMD_STRIDE_OKA(x),((x) == 2))
 | |
| #define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
 | |
| 
 | |
| typedef DS(double,float) V __attribute__ ((vector_size(16)));
 | |
| 
 | |
| #define VADD(a,b) ((a)+(b))
 | |
| #define VSUB(a,b) ((a)-(b))
 | |
| #define VMUL(a,b) ((a)*(b))
 | |
| 
 | |
| 
 | |
| #define LDK(x) x
 | |
| 
 | |
| static inline V LDA(const R *x, INT ivs, const R *aligned_like)
 | |
| {
 | |
|      (void)aligned_like; /* UNUSED */
 | |
|      (void)ivs; /* UNUSED */
 | |
|      return *(const V *)x;
 | |
| }
 | |
| 
 | |
| static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
 | |
| {
 | |
|      (void)aligned_like; /* UNUSED */
 | |
|      (void)ovs; /* UNUSED */
 | |
|      *(V *)x = v;
 | |
| }
 | |
| 
 | |
| static inline V LD(const R *x, INT ivs, const R *aligned_like)
 | |
| {
 | |
|     (void)aligned_like; /* UNUSED */
 | |
|     V res;
 | |
|     res[0] = x[0];
 | |
|     res[1] = x[1];
 | |
| #ifdef FFTW_SINGLE
 | |
|     res[2] = x[ivs];
 | |
|     res[3] = x[ivs+1];
 | |
| #endif
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| #ifdef FFTW_SINGLE
 | |
| /* ST has to be separate due to the storage hack requiring reverse order */
 | |
| static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
 | |
| {
 | |
|     (void)aligned_like; /* UNUSED */
 | |
|     (void)ovs; /* UNUSED */
 | |
|     *(x + ovs    ) = v[2];
 | |
|     *(x + ovs + 1) = v[3];
 | |
|     *(x    ) = v[0];
 | |
|     *(x + 1) = v[1];
 | |
| }
 | |
| #else
 | |
| /* FFTW_DOUBLE */
 | |
| #  define ST STA
 | |
| #endif
 | |
| 
 | |
| #ifdef FFTW_SINGLE
 | |
| #define STM2 ST
 | |
| #define STN2(x, v0, v1, ovs) /* nop */
 | |
| 
 | |
| static inline void STN4(R *x, V v0, V v1, V v2, V v3, INT ovs)
 | |
| {
 | |
|     *(x              ) = v0[0];
 | |
|     *(x           + 1) = v1[0];
 | |
|     *(x           + 2) = v2[0];
 | |
|     *(x           + 3) = v3[0];
 | |
|     *(x     + ovs    ) = v0[1];
 | |
|     *(x     + ovs + 1) = v1[1];
 | |
|     *(x     + ovs + 2) = v2[1];
 | |
|     *(x     + ovs + 3) = v3[1];
 | |
|     *(x + 2 * ovs    ) = v0[2];
 | |
|     *(x + 2 * ovs + 1) = v1[2];
 | |
|     *(x + 2 * ovs + 2) = v2[2];
 | |
|     *(x + 2 * ovs + 3) = v3[2];
 | |
|     *(x + 3 * ovs    ) = v0[3];
 | |
|     *(x + 3 * ovs + 1) = v1[3];
 | |
|     *(x + 3 * ovs + 2) = v2[3];
 | |
|     *(x + 3 * ovs + 3) = v3[3];
 | |
| }
 | |
| #define STM4(x, v, ovs, aligned_like) /* no-op */
 | |
| 
 | |
| 
 | |
| #else
 | |
| /* FFTW_DOUBLE */
 | |
| 
 | |
| #define STM2 STA
 | |
| #define STN2(x, v0, v1, ovs) /* nop */
 | |
| 
 | |
| static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
 | |
| {
 | |
|      (void)aligned_like; /* UNUSED */
 | |
|      *(x) = v[0];
 | |
|      *(x+ovs) = v[1];
 | |
| }
 | |
| #  define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
 | |
| #endif
 | |
| 
 | |
| 
 | |
| static inline V FLIP_RI(V x)
 | |
| {
 | |
| #ifdef FFTW_SINGLE
 | |
|     return (V){x[1],x[0],x[3],x[2]};
 | |
| #else
 | |
|     return (V){x[1],x[0]};
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline V VCONJ(V x)
 | |
| {
 | |
| #ifdef FFTW_SINGLE
 | |
|     return (V){x[0],-x[1],x[2],-x[3]};
 | |
| #else
 | |
|     return (V){x[0],-x[1]};
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline V VBYI(V x)
 | |
| {
 | |
|      x = VCONJ(x);
 | |
|      x = FLIP_RI(x);
 | |
|      return x;
 | |
| }
 | |
| 
 | |
| /* FMA support */
 | |
| #define VFMA(a, b, c) VADD(c, VMUL(a, b))
 | |
| #define VFNMS(a, b, c) VSUB(c, VMUL(a, b))
 | |
| #define VFMS(a, b, c) VSUB(VMUL(a, b), c)
 | |
| #define VFMAI(b, c) VADD(c, VBYI(b))
 | |
| #define VFNMSI(b, c) VSUB(c, VBYI(b))
 | |
| #define VFMACONJ(b,c)  VADD(VCONJ(b),c)
 | |
| #define VFMSCONJ(b,c)  VSUB(VCONJ(b),c)
 | |
| #define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))
 | |
| 
 | |
| static inline V VZMUL(V tx, V sr)
 | |
| {
 | |
|      V tr = VDUPL(tx);
 | |
|      V ti = VDUPH(tx);
 | |
|      tr = VMUL(sr, tr);
 | |
|      sr = VBYI(sr);
 | |
|      return VFMA(ti, sr, tr);
 | |
| }
 | |
| 
 | |
| static inline V VZMULJ(V tx, V sr)
 | |
| {
 | |
|      V tr = VDUPL(tx);
 | |
|      V ti = VDUPH(tx);
 | |
|      tr = VMUL(sr, tr);
 | |
|      sr = VBYI(sr);
 | |
|      return VFNMS(ti, sr, tr);
 | |
| }
 | |
| 
 | |
| static inline V VZMULI(V tx, V sr)
 | |
| {
 | |
|      V tr = VDUPL(tx);
 | |
|      V ti = VDUPH(tx);
 | |
|      ti = VMUL(ti, sr);
 | |
|      sr = VBYI(sr);
 | |
|      return VFMS(tr, sr, ti);
 | |
| }
 | |
| 
 | |
| static inline V VZMULIJ(V tx, V sr)
 | |
| {
 | |
|      V tr = VDUPL(tx);
 | |
|      V ti = VDUPH(tx);
 | |
|      ti = VMUL(ti, sr);
 | |
|      sr = VBYI(sr);
 | |
|      return VFMA(tr, sr, ti);
 | |
| }
 | |
| 
 | |
| /* twiddle storage #1: compact, slower */
 | |
| #ifdef FFTW_SINGLE
 | |
| #  define VTW1(v,x)  \
 | |
|   {TW_CEXP, v, x}, {TW_CEXP, v+1, x}     
 | |
| static inline V BYTW1(const R *t, V sr)
 | |
| {
 | |
|     return VZMUL(LDA(t, 2, t), sr);
 | |
| }
 | |
| static inline V BYTWJ1(const R *t, V sr)
 | |
| {
 | |
|     return VZMULJ(LDA(t, 2, t), sr);
 | |
| }
 | |
| #else /* !FFTW_SINGLE */
 | |
| #  define VTW1(v,x) {TW_CEXP, v, x}
 | |
| static inline V BYTW1(const R *t, V sr)
 | |
| {
 | |
|      V tx = LD(t, 1, t);
 | |
|      return VZMUL(tx, sr);
 | |
| }
 | |
| static inline V BYTWJ1(const R *t, V sr)
 | |
| {
 | |
|      V tx = LD(t, 1, t);
 | |
|      return VZMULJ(tx, sr);
 | |
| }
 | |
| #endif
 | |
| #define TWVL1 (VL)
 | |
| 
 | |
| /* twiddle storage #2: twice the space, faster (when in cache) */
 | |
| #ifdef FFTW_SINGLE
 | |
| #  define VTW2(v,x)                                                     \
 | |
|   {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x},   \
 | |
|   {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
 | |
| #else /* !FFTW_SINGLE */
 | |
| #  define VTW2(v,x)                                                     \
 | |
|   {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
 | |
| #endif
 | |
| #define TWVL2 (2 * VL)
 | |
| static inline V BYTW2(const R *t, V sr)
 | |
| {
 | |
|      const V *twp = (const V *)t;
 | |
|      V si = FLIP_RI(sr);
 | |
|      V tr = twp[0], ti = twp[1];
 | |
|      return VFMA(tr, sr, VMUL(ti, si));
 | |
| }
 | |
| static inline V BYTWJ2(const R *t, V sr)
 | |
| {
 | |
|      const V *twp = (const V *)t;
 | |
|      V si = FLIP_RI(sr);
 | |
|      V tr = twp[0], ti = twp[1];
 | |
|      return VFNMS(ti, si, VMUL(tr, sr));
 | |
| }
 | |
| 
 | |
| /* twiddle storage #3 */
 | |
| #ifdef FFTW_SINGLE
 | |
| #  define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
 | |
| #  define TWVL3 (VL)
 | |
| #else
 | |
| #  define VTW3(v,x) VTW1(v,x)
 | |
| #  define TWVL3 TWVL1
 | |
| #endif
 | |
| 
 | |
| /* twiddle storage for split arrays */
 | |
| #ifdef FFTW_SINGLE
 | |
| #  define VTWS(v,x)                                                       \
 | |
|     {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
 | |
|     {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
 | |
| #else
 | |
| #  define VTWS(v,x)                                                       \
 | |
|     {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
 | |
| #endif
 | |
| #define TWVLS (2 * VL)
 | |
| 
 | |
| #define VLEAVE() /* nothing */
 | |
| 
 | |
| #include "simd-common.h"
 | 
