131 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
			
		
		
	
	
			131 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			OCaml
		
	
	
	
	
	
(*
 | 
						|
 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
 | 
						|
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 | 
						|
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | 
						|
 *
 | 
						|
*)
 | 
						|
 | 
						|
open Complex
 | 
						|
open Util
 | 
						|
 | 
						|
let polyphase m a ph i = a (m * i + ph)
 | 
						|
 | 
						|
let rec divmod n i =
 | 
						|
  if (i < 0) then 
 | 
						|
    let (a, b) = divmod n (i + n)
 | 
						|
    in (a - 1, b)
 | 
						|
  else (i / n, i mod n)
 | 
						|
 | 
						|
let unpolyphase m a i = let (x, y) = divmod m i in a y x
 | 
						|
 | 
						|
let lift2 f a b i = f (a i) (b i)
 | 
						|
 | 
						|
(* convolution of signals A and B *)
 | 
						|
let rec conv na a nb b =
 | 
						|
  let rec naive na a nb b i =
 | 
						|
    sigma 0 na (fun j -> (a j) @* (b (i - j)))
 | 
						|
 | 
						|
  and recur na a nb b =
 | 
						|
    if (na <= 1 || nb <= 1) then
 | 
						|
      naive na a nb b
 | 
						|
    else
 | 
						|
      let p = polyphase 2 in
 | 
						|
      let ee = conv (na - na / 2) (p a 0) (nb - nb / 2) (p b 0)
 | 
						|
      and eo = conv (na - na / 2) (p a 0) (nb / 2) (p b 1)
 | 
						|
      and oe = conv (na / 2) (p a 1) (nb - nb / 2) (p b 0)
 | 
						|
      and oo = conv (na / 2) (p a 1) (nb / 2) (p b 1) in
 | 
						|
      unpolyphase 2 (function
 | 
						|
	  0 -> fun i -> (ee i) @+ (oo (i - 1))
 | 
						|
	| 1 -> fun i -> (eo i) @+ (oe i) 
 | 
						|
	| _ -> failwith "recur")
 | 
						|
 | 
						|
 | 
						|
  (* Karatsuba variant 1: (a+bx)(c+dx) = (ac+bdxx)+((a+b)(c+d)-ac-bd)x *)
 | 
						|
  and karatsuba1 na a nb b =
 | 
						|
      let p = polyphase 2 in
 | 
						|
      let ae = p a 0 and nae = na - na / 2
 | 
						|
      and ao = p a 1 and nao = na / 2
 | 
						|
      and be = p b 0 and nbe = nb - nb / 2
 | 
						|
      and bo = p b 1 and nbo = nb / 2 in
 | 
						|
      let ae = infinite nae ae and ao = infinite nao ao
 | 
						|
      and be = infinite nbe be and bo = infinite nbo bo in
 | 
						|
      let aeo = lift2 (@+) ae ao and naeo = nae
 | 
						|
      and beo = lift2 (@+) be bo and nbeo = nbe in
 | 
						|
      let ee = conv nae ae nbe be 
 | 
						|
      and oo = conv nao ao nbo bo
 | 
						|
      and eoeo = conv naeo aeo nbeo beo in
 | 
						|
 | 
						|
      let q = function
 | 
						|
	  0 -> fun i -> (ee i)  @+ (oo (i - 1))
 | 
						|
	| 1 -> fun i -> (eoeo i) @- ((ee i) @+ (oo i))
 | 
						|
	| _ -> failwith "karatsuba1" in
 | 
						|
      unpolyphase 2 q
 | 
						|
 | 
						|
  (* Karatsuba variant 2: 
 | 
						|
     (a+bx)(c+dx) = ((a+b)c-b(c-dxx))+x((a+b)c-a(c-d)) *)
 | 
						|
  and karatsuba2 na a nb b =
 | 
						|
      let p = polyphase 2 in
 | 
						|
      let ae = p a 0 and nae = na - na / 2
 | 
						|
      and ao = p a 1 and nao = na / 2
 | 
						|
      and be = p b 0 and nbe = nb - nb / 2
 | 
						|
      and bo = p b 1 and nbo = nb / 2 in
 | 
						|
      let ae = infinite nae ae and ao = infinite nao ao
 | 
						|
      and be = infinite nbe be and bo = infinite nbo bo in
 | 
						|
 | 
						|
      let c1 = conv nae (lift2 (@+) ae ao) nbe be
 | 
						|
      and c2 = conv nao ao (nbo + 1) (fun i -> be i @- bo (i - 1))
 | 
						|
      and c3 = conv nae ae nbe (lift2 (@-) be bo) in
 | 
						|
 | 
						|
      let q = function
 | 
						|
	  0 -> lift2 (@-) c1 c2
 | 
						|
	| 1 -> lift2 (@-) c1 c3
 | 
						|
	| _ -> failwith "karatsuba2" in
 | 
						|
      unpolyphase 2 q
 | 
						|
 | 
						|
  and karatsuba na a nb b =
 | 
						|
    let m = na + nb - 1 in
 | 
						|
    if (m < !Magic.karatsuba_min) then
 | 
						|
      recur na a nb b
 | 
						|
    else
 | 
						|
      match !Magic.karatsuba_variant with
 | 
						|
	1 -> karatsuba1 na a nb b
 | 
						|
      |	2 -> karatsuba2 na a nb b
 | 
						|
      |	_ -> failwith "unknown karatsuba variant"
 | 
						|
 | 
						|
  and via_circular na a nb b =
 | 
						|
    let m = na + nb - 1 in
 | 
						|
    if (m < !Magic.circular_min) then
 | 
						|
      karatsuba na a nb b
 | 
						|
    else
 | 
						|
      let rec find_min n = if n >= m then n else find_min (2 * n) in
 | 
						|
      circular (find_min 1) a b
 | 
						|
 | 
						|
  in
 | 
						|
  let a = infinite na a and b = infinite nb b in
 | 
						|
  let res = array (na + nb - 1) (via_circular na a nb b) in
 | 
						|
  infinite (na + nb - 1) res
 | 
						|
    
 | 
						|
and circular n a b =
 | 
						|
  let via_dft n a b =
 | 
						|
    let fa = Fft.dft (-1) n a 
 | 
						|
    and fb = Fft.dft (-1) n b
 | 
						|
    and scale = inverse_int n in
 | 
						|
    let fab i = ((fa i) @* (fb i)) @* scale in
 | 
						|
    Fft.dft 1 n fab
 | 
						|
 | 
						|
  in via_dft n a b
 |