210 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			210 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* This file was automatically generated --- DO NOT EDIT */
 | |
| /* Generated on Tue Sep 14 10:46:47 EDT 2021 */
 | |
| 
 | |
| #include "rdft/codelet-rdft.h"
 | |
| 
 | |
| #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cb_9 -include rdft/scalar/r2cb.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 32 FP additions, 24 FP multiplications,
 | |
|  * (or, 8 additions, 0 multiplications, 24 fused multiply/add),
 | |
|  * 35 stack variables, 12 constants, and 18 memory accesses
 | |
|  */
 | |
| #include "rdft/scalar/r2cb.h"
 | |
| 
 | |
| static void r2cb_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
 | |
| {
 | |
|      DK(KP1_705737063, +1.705737063904886419256501927880148143872040591);
 | |
|      DK(KP1_969615506, +1.969615506024416118733486049179046027341286503);
 | |
|      DK(KP984807753, +0.984807753012208059366743024589523013670643252);
 | |
|      DK(KP176326980, +0.176326980708464973471090386868618986121633062);
 | |
|      DK(KP1_326827896, +1.326827896337876792410842639271782594433726619);
 | |
|      DK(KP1_532088886, +1.532088886237956070404785301110833347871664914);
 | |
|      DK(KP766044443, +0.766044443118978035202392650555416673935832457);
 | |
|      DK(KP839099631, +0.839099631177280011763127298123181364687434283);
 | |
|      DK(KP866025403, +0.866025403784438646763723170752936183471402627);
 | |
|      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
 | |
|      DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
 | |
|      DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
 | |
|      {
 | |
| 	  INT i;
 | |
| 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
 | |
| 	       E T3, Tp, Tb, Th, Ti, T8, Tl, Tq, Tg, Tr, Tv, Tw;
 | |
| 	       {
 | |
| 		    E Ta, T1, T2, T9;
 | |
| 		    Ta = Ci[WS(csi, 3)];
 | |
| 		    T1 = Cr[0];
 | |
| 		    T2 = Cr[WS(csr, 3)];
 | |
| 		    T9 = T1 - T2;
 | |
| 		    T3 = FMA(KP2_000000000, T2, T1);
 | |
| 		    Tp = FMA(KP1_732050807, Ta, T9);
 | |
| 		    Tb = FNMS(KP1_732050807, Ta, T9);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T4, T7, Tk, Tf, Tj, Tc;
 | |
| 		    T4 = Cr[WS(csr, 1)];
 | |
| 		    Th = Ci[WS(csi, 1)];
 | |
| 		    {
 | |
| 			 E T5, T6, Td, Te;
 | |
| 			 T5 = Cr[WS(csr, 4)];
 | |
| 			 T6 = Cr[WS(csr, 2)];
 | |
| 			 T7 = T5 + T6;
 | |
| 			 Tk = T6 - T5;
 | |
| 			 Td = Ci[WS(csi, 4)];
 | |
| 			 Te = Ci[WS(csi, 2)];
 | |
| 			 Tf = Td + Te;
 | |
| 			 Ti = Td - Te;
 | |
| 		    }
 | |
| 		    T8 = T4 + T7;
 | |
| 		    Tj = FNMS(KP500000000, Ti, Th);
 | |
| 		    Tl = FNMS(KP866025403, Tk, Tj);
 | |
| 		    Tq = FMA(KP866025403, Tk, Tj);
 | |
| 		    Tc = FNMS(KP500000000, T7, T4);
 | |
| 		    Tg = FNMS(KP866025403, Tf, Tc);
 | |
| 		    Tr = FMA(KP866025403, Tf, Tc);
 | |
| 	       }
 | |
| 	       R0[0] = FMA(KP2_000000000, T8, T3);
 | |
| 	       Tv = T3 - T8;
 | |
| 	       Tw = Ti + Th;
 | |
| 	       R1[WS(rs, 1)] = FNMS(KP1_732050807, Tw, Tv);
 | |
| 	       R0[WS(rs, 3)] = FMA(KP1_732050807, Tw, Tv);
 | |
| 	       {
 | |
| 		    E To, Tm, Tn, Tu, Ts, Tt;
 | |
| 		    To = FMA(KP839099631, Tg, Tl);
 | |
| 		    Tm = FNMS(KP839099631, Tl, Tg);
 | |
| 		    Tn = FNMS(KP766044443, Tm, Tb);
 | |
| 		    R1[0] = FMA(KP1_532088886, Tm, Tb);
 | |
| 		    R1[WS(rs, 3)] = FMA(KP1_326827896, To, Tn);
 | |
| 		    R0[WS(rs, 2)] = FNMS(KP1_326827896, To, Tn);
 | |
| 		    Tu = FMA(KP176326980, Tq, Tr);
 | |
| 		    Ts = FNMS(KP176326980, Tr, Tq);
 | |
| 		    Tt = FMA(KP984807753, Ts, Tp);
 | |
| 		    R0[WS(rs, 1)] = FNMS(KP1_969615506, Ts, Tp);
 | |
| 		    R0[WS(rs, 4)] = FMA(KP1_705737063, Tu, Tt);
 | |
| 		    R1[WS(rs, 2)] = FNMS(KP1_705737063, Tu, Tt);
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const kr2c_desc desc = { 9, "r2cb_9", { 8, 0, 24, 0 }, &GENUS };
 | |
| 
 | |
| void X(codelet_r2cb_9) (planner *p) { X(kr2c_register) (p, r2cb_9, &desc);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cb_9 -include rdft/scalar/r2cb.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 32 FP additions, 18 FP multiplications,
 | |
|  * (or, 22 additions, 8 multiplications, 10 fused multiply/add),
 | |
|  * 35 stack variables, 12 constants, and 18 memory accesses
 | |
|  */
 | |
| #include "rdft/scalar/r2cb.h"
 | |
| 
 | |
| static void r2cb_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
 | |
| {
 | |
|      DK(KP984807753, +0.984807753012208059366743024589523013670643252);
 | |
|      DK(KP173648177, +0.173648177666930348851716626769314796000375677);
 | |
|      DK(KP300767466, +0.300767466360870593278543795225003852144476517);
 | |
|      DK(KP1_705737063, +1.705737063904886419256501927880148143872040591);
 | |
|      DK(KP642787609, +0.642787609686539326322643409907263432907559884);
 | |
|      DK(KP766044443, +0.766044443118978035202392650555416673935832457);
 | |
|      DK(KP1_326827896, +1.326827896337876792410842639271782594433726619);
 | |
|      DK(KP1_113340798, +1.113340798452838732905825904094046265936583811);
 | |
|      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
 | |
|      DK(KP866025403, +0.866025403784438646763723170752936183471402627);
 | |
|      DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
 | |
|      DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
 | |
|      {
 | |
| 	  INT i;
 | |
| 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
 | |
| 	       E T3, Tq, Tc, Tk, Tj, T8, Tm, Ts, Th, Tr, Tw, Tx;
 | |
| 	       {
 | |
| 		    E Tb, T1, T2, T9, Ta;
 | |
| 		    Ta = Ci[WS(csi, 3)];
 | |
| 		    Tb = KP1_732050807 * Ta;
 | |
| 		    T1 = Cr[0];
 | |
| 		    T2 = Cr[WS(csr, 3)];
 | |
| 		    T9 = T1 - T2;
 | |
| 		    T3 = FMA(KP2_000000000, T2, T1);
 | |
| 		    Tq = T9 + Tb;
 | |
| 		    Tc = T9 - Tb;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T4, T7, Ti, Tg, Tl, Td;
 | |
| 		    T4 = Cr[WS(csr, 1)];
 | |
| 		    Tk = Ci[WS(csi, 1)];
 | |
| 		    {
 | |
| 			 E T5, T6, Te, Tf;
 | |
| 			 T5 = Cr[WS(csr, 4)];
 | |
| 			 T6 = Cr[WS(csr, 2)];
 | |
| 			 T7 = T5 + T6;
 | |
| 			 Ti = KP866025403 * (T5 - T6);
 | |
| 			 Te = Ci[WS(csi, 4)];
 | |
| 			 Tf = Ci[WS(csi, 2)];
 | |
| 			 Tg = KP866025403 * (Te + Tf);
 | |
| 			 Tj = Tf - Te;
 | |
| 		    }
 | |
| 		    T8 = T4 + T7;
 | |
| 		    Tl = FMA(KP500000000, Tj, Tk);
 | |
| 		    Tm = Ti + Tl;
 | |
| 		    Ts = Tl - Ti;
 | |
| 		    Td = FNMS(KP500000000, T7, T4);
 | |
| 		    Th = Td - Tg;
 | |
| 		    Tr = Td + Tg;
 | |
| 	       }
 | |
| 	       R0[0] = FMA(KP2_000000000, T8, T3);
 | |
| 	       Tw = T3 - T8;
 | |
| 	       Tx = KP1_732050807 * (Tk - Tj);
 | |
| 	       R1[WS(rs, 1)] = Tw - Tx;
 | |
| 	       R0[WS(rs, 3)] = Tw + Tx;
 | |
| 	       {
 | |
| 		    E Tp, Tn, To, Tv, Tt, Tu;
 | |
| 		    Tp = FMA(KP1_113340798, Th, KP1_326827896 * Tm);
 | |
| 		    Tn = FNMS(KP642787609, Tm, KP766044443 * Th);
 | |
| 		    To = Tc - Tn;
 | |
| 		    R1[0] = FMA(KP2_000000000, Tn, Tc);
 | |
| 		    R1[WS(rs, 3)] = To + Tp;
 | |
| 		    R0[WS(rs, 2)] = To - Tp;
 | |
| 		    Tv = FMA(KP1_705737063, Tr, KP300767466 * Ts);
 | |
| 		    Tt = FNMS(KP984807753, Ts, KP173648177 * Tr);
 | |
| 		    Tu = Tq - Tt;
 | |
| 		    R0[WS(rs, 1)] = FMA(KP2_000000000, Tt, Tq);
 | |
| 		    R0[WS(rs, 4)] = Tu + Tv;
 | |
| 		    R1[WS(rs, 2)] = Tu - Tv;
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const kr2c_desc desc = { 9, "r2cb_9", { 22, 8, 10, 0 }, &GENUS };
 | |
| 
 | |
| void X(codelet_r2cb_9) (planner *p) { X(kr2c_register) (p, r2cb_9, &desc);
 | |
| }
 | |
| 
 | |
| #endif
 | 
