333 lines
		
	
	
		
			9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			333 lines
		
	
	
		
			9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include "dft/ct.h"
 | |
| 
 | |
| typedef struct {
 | |
|      ct_solver super;
 | |
|      const ct_desc *desc;
 | |
|      int bufferedp;
 | |
|      kdftw k;
 | |
| } S;
 | |
| 
 | |
| typedef struct {
 | |
|      plan_dftw super;
 | |
|      kdftw k;
 | |
|      INT r;
 | |
|      stride rs;
 | |
|      INT m, ms, v, vs, mb, me, extra_iter;
 | |
|      stride brs;
 | |
|      twid *td;
 | |
|      const S *slv;
 | |
| } P;
 | |
| 
 | |
| 
 | |
| /*************************************************************
 | |
|   Nonbuffered code
 | |
|  *************************************************************/
 | |
| static void apply(const plan *ego_, R *rio, R *iio)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
|      INT i;
 | |
|      ASSERT_ALIGNED_DOUBLE;
 | |
|      for (i = 0; i < ego->v; ++i, rio += ego->vs, iio += ego->vs) {
 | |
| 	  INT  mb = ego->mb, ms = ego->ms;
 | |
| 	  ego->k(rio + mb*ms, iio + mb*ms, ego->td->W, 
 | |
| 		 ego->rs, mb, ego->me, ms);
 | |
|      }
 | |
| }
 | |
| 
 | |
| static void apply_extra_iter(const plan *ego_, R *rio, R *iio)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
|      INT i, v = ego->v, vs = ego->vs;
 | |
|      INT mb = ego->mb, me = ego->me, mm = me - 1, ms = ego->ms;
 | |
|      ASSERT_ALIGNED_DOUBLE;
 | |
|      for (i = 0; i < v; ++i, rio += vs, iio += vs) {
 | |
| 	  ego->k(rio + mb*ms, iio + mb*ms, ego->td->W, 
 | |
| 		 ego->rs, mb, mm, ms);
 | |
| 	  ego->k(rio + mm*ms, iio + mm*ms, ego->td->W, 
 | |
| 		 ego->rs, mm, mm+2, 0);
 | |
|      }
 | |
| }
 | |
| 
 | |
| /*************************************************************
 | |
|   Buffered code
 | |
|  *************************************************************/
 | |
| static void dobatch(const P *ego, R *rA, R *iA, INT mb, INT me, R *buf)
 | |
| {
 | |
|      INT brs = WS(ego->brs, 1);
 | |
|      INT rs = WS(ego->rs, 1);
 | |
|      INT ms = ego->ms;
 | |
| 
 | |
|      X(cpy2d_pair_ci)(rA + mb*ms, iA + mb*ms, buf, buf + 1,
 | |
| 		      ego->r, rs, brs,
 | |
| 		      me - mb, ms, 2);
 | |
|      ego->k(buf, buf + 1, ego->td->W, ego->brs, mb, me, 2);
 | |
|      X(cpy2d_pair_co)(buf, buf + 1, rA + mb*ms, iA + mb*ms,
 | |
| 		      ego->r, brs, rs,
 | |
| 		      me - mb, 2, ms);
 | |
| }
 | |
| 
 | |
| /* must be even for SIMD alignment; should not be 2^k to avoid
 | |
|    associativity conflicts */
 | |
| static INT compute_batchsize(INT radix)
 | |
| {
 | |
|      /* round up to multiple of 4 */
 | |
|      radix += 3;
 | |
|      radix &= -4;
 | |
| 
 | |
|      return (radix + 2);
 | |
| }
 | |
| 
 | |
| static void apply_buf(const plan *ego_, R *rio, R *iio)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
|      INT i, j, v = ego->v, r = ego->r;
 | |
|      INT batchsz = compute_batchsize(r);
 | |
|      R *buf;
 | |
|      INT mb = ego->mb, me = ego->me;
 | |
|      size_t bufsz = r * batchsz * 2 * sizeof(R);
 | |
| 
 | |
|      BUF_ALLOC(R *, buf, bufsz);
 | |
| 
 | |
|      for (i = 0; i < v; ++i, rio += ego->vs, iio += ego->vs) {
 | |
| 	  for (j = mb; j + batchsz < me; j += batchsz) 
 | |
| 	       dobatch(ego, rio, iio, j, j + batchsz, buf);
 | |
| 
 | |
| 	  dobatch(ego, rio, iio, j, me, buf);
 | |
|      }
 | |
| 
 | |
|      BUF_FREE(buf, bufsz);
 | |
| }
 | |
| 
 | |
| /*************************************************************
 | |
|   common code
 | |
|  *************************************************************/
 | |
| static void awake(plan *ego_, enum wakefulness wakefulness)
 | |
| {
 | |
|      P *ego = (P *) ego_;
 | |
| 
 | |
|      X(twiddle_awake)(wakefulness, &ego->td, ego->slv->desc->tw,
 | |
| 		      ego->r * ego->m, ego->r, ego->m + ego->extra_iter);
 | |
| }
 | |
| 
 | |
| static void destroy(plan *ego_)
 | |
| {
 | |
|      P *ego = (P *) ego_;
 | |
|      X(stride_destroy)(ego->brs);
 | |
|      X(stride_destroy)(ego->rs);
 | |
| }
 | |
| 
 | |
| static void print(const plan *ego_, printer *p)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
|      const S *slv = ego->slv;
 | |
|      const ct_desc *e = slv->desc;
 | |
| 
 | |
|      if (slv->bufferedp)
 | |
| 	  p->print(p, "(dftw-directbuf/%D-%D/%D%v \"%s\")",
 | |
| 		   compute_batchsize(ego->r), ego->r,
 | |
| 		   X(twiddle_length)(ego->r, e->tw), ego->v, e->nam);
 | |
|      else
 | |
| 	  p->print(p, "(dftw-direct-%D/%D%v \"%s\")",
 | |
| 		   ego->r, X(twiddle_length)(ego->r, e->tw), ego->v, e->nam);
 | |
| }
 | |
| 
 | |
| static int applicable0(const S *ego,
 | |
| 		       INT r, INT irs, INT ors,
 | |
| 		       INT m, INT ms,
 | |
| 		       INT v, INT ivs, INT ovs,
 | |
| 		       INT mb, INT me,
 | |
| 		       R *rio, R *iio,
 | |
| 		       const planner *plnr, INT *extra_iter)
 | |
| {
 | |
|      const ct_desc *e = ego->desc;
 | |
|      UNUSED(v);
 | |
| 
 | |
|      return (
 | |
| 	  1
 | |
| 	  && r == e->radix
 | |
| 	  && irs == ors /* in-place along R */
 | |
| 	  && ivs == ovs /* in-place along V */
 | |
| 
 | |
| 	  /* check for alignment/vector length restrictions */
 | |
| 	  && ((*extra_iter = 0,
 | |
| 	       e->genus->okp(e, rio, iio, irs, ivs, m, mb, me, ms, plnr))
 | |
| 	      ||
 | |
| 	      (*extra_iter = 1,
 | |
| 	       (1
 | |
| 		/* FIXME: require full array, otherwise some threads
 | |
| 		   may be extra_iter and other threads won't be.
 | |
| 		   Generating the proper twiddle factors is a pain in
 | |
| 		   this case */
 | |
| 		&& mb == 0 && me == m
 | |
| 		&& e->genus->okp(e, rio, iio, irs, ivs,
 | |
| 				 m, mb, me - 1, ms, plnr)
 | |
| 		&& e->genus->okp(e, rio, iio, irs, ivs,
 | |
| 				 m, me - 1, me + 1, ms, plnr))))
 | |
| 
 | |
| 	  && (e->genus->okp(e, rio + ivs, iio + ivs, irs, ivs,
 | |
| 			    m, mb, me - *extra_iter, ms, plnr))
 | |
| 
 | |
| 	  );
 | |
| }
 | |
| 
 | |
| static int applicable0_buf(const S *ego,
 | |
| 			   INT r, INT irs, INT ors,
 | |
| 			   INT m, INT ms,
 | |
| 			   INT v, INT ivs, INT ovs,
 | |
| 			   INT mb, INT me,
 | |
| 			   R *rio, R *iio,
 | |
| 			   const planner *plnr)
 | |
| {
 | |
|      const ct_desc *e = ego->desc;
 | |
|      INT batchsz;
 | |
|      UNUSED(v); UNUSED(ms); UNUSED(rio); UNUSED(iio);
 | |
| 
 | |
|      return (
 | |
| 	  1
 | |
| 	  && r == e->radix
 | |
| 	  && irs == ors /* in-place along R */
 | |
| 	  && ivs == ovs /* in-place along V */
 | |
| 
 | |
| 	  /* check for alignment/vector length restrictions, both for
 | |
| 	     batchsize and for the remainder */
 | |
| 	  && (batchsz = compute_batchsize(r), 1)
 | |
| 	  && (e->genus->okp(e, 0, ((const R *)0) + 1, 2 * batchsz, 0,
 | |
| 			    m, mb, mb + batchsz, 2, plnr))
 | |
| 	  && (e->genus->okp(e, 0, ((const R *)0) + 1, 2 * batchsz, 0,
 | |
| 			    m, mb, me, 2, plnr))
 | |
| 	  );
 | |
| }
 | |
| 
 | |
| static int applicable(const S *ego,
 | |
| 		      INT r, INT irs, INT ors,
 | |
| 		      INT m, INT ms,
 | |
| 		      INT v, INT ivs, INT ovs,
 | |
| 		      INT mb, INT me,
 | |
| 		      R *rio, R *iio,
 | |
| 		      const planner *plnr, INT *extra_iter)
 | |
| {
 | |
|      if (ego->bufferedp) {
 | |
| 	  *extra_iter = 0;
 | |
| 	  if (!applicable0_buf(ego,
 | |
| 			       r, irs, ors, m, ms, v, ivs, ovs, mb, me,
 | |
| 			       rio, iio, plnr))
 | |
| 	       return 0;
 | |
|      } else {
 | |
| 	  if (!applicable0(ego,
 | |
| 			   r, irs, ors, m, ms, v, ivs, ovs, mb, me,
 | |
| 			   rio, iio, plnr, extra_iter))
 | |
| 	       return 0;
 | |
|      }
 | |
| 
 | |
|      if (NO_UGLYP(plnr) && X(ct_uglyp)((ego->bufferedp? (INT)512 : (INT)16),
 | |
| 				       v, m * r, r))
 | |
| 	  return 0;
 | |
| 
 | |
|      if (m * r > 262144 && NO_FIXED_RADIX_LARGE_NP(plnr))
 | |
| 	  return 0;
 | |
| 
 | |
|      return 1;
 | |
| }
 | |
| 
 | |
| static plan *mkcldw(const ct_solver *ego_,
 | |
| 		    INT r, INT irs, INT ors,
 | |
| 		    INT m, INT ms,
 | |
| 		    INT v, INT ivs, INT ovs,
 | |
| 		    INT mstart, INT mcount,
 | |
| 		    R *rio, R *iio,
 | |
| 		    planner *plnr)
 | |
| {
 | |
|      const S *ego = (const S *) ego_;
 | |
|      P *pln;
 | |
|      const ct_desc *e = ego->desc;
 | |
|      INT extra_iter;
 | |
| 
 | |
|      static const plan_adt padt = {
 | |
| 	  0, awake, print, destroy
 | |
|      };
 | |
| 
 | |
|      A(mstart >= 0 && mstart + mcount <= m);
 | |
|      if (!applicable(ego,
 | |
| 		     r, irs, ors, m, ms, v, ivs, ovs, mstart, mstart + mcount,
 | |
| 		     rio, iio, plnr, &extra_iter))
 | |
|           return (plan *)0;
 | |
| 
 | |
|      if (ego->bufferedp) {
 | |
| 	  pln = MKPLAN_DFTW(P, &padt, apply_buf);
 | |
|      } else {
 | |
| 	  pln = MKPLAN_DFTW(P, &padt, extra_iter ? apply_extra_iter : apply);
 | |
|      }
 | |
| 
 | |
|      pln->k = ego->k;
 | |
|      pln->rs = X(mkstride)(r, irs);
 | |
|      pln->td = 0;
 | |
|      pln->r = r;
 | |
|      pln->m = m;
 | |
|      pln->ms = ms;
 | |
|      pln->v = v;
 | |
|      pln->vs = ivs;
 | |
|      pln->mb = mstart;
 | |
|      pln->me = mstart + mcount;
 | |
|      pln->slv = ego;
 | |
|      pln->brs = X(mkstride)(r, 2 * compute_batchsize(r));
 | |
|      pln->extra_iter = extra_iter;
 | |
| 
 | |
|      X(ops_zero)(&pln->super.super.ops);
 | |
|      X(ops_madd2)(v * (mcount/e->genus->vl), &e->ops, &pln->super.super.ops);
 | |
| 
 | |
|      if (ego->bufferedp) {
 | |
| 	  /* 8 load/stores * N * V */
 | |
| 	  pln->super.super.ops.other += 8 * r * mcount * v;
 | |
|      }
 | |
| 
 | |
|      pln->super.super.could_prune_now_p =
 | |
| 	  (!ego->bufferedp && r >= 5 && r < 64 && m >= r);
 | |
|      return &(pln->super.super);
 | |
| }
 | |
| 
 | |
| static void regone(planner *plnr, kdftw codelet,
 | |
| 		   const ct_desc *desc, int dec, int bufferedp)
 | |
| {
 | |
|      S *slv = (S *)X(mksolver_ct)(sizeof(S), desc->radix, dec, mkcldw, 0);
 | |
|      slv->k = codelet;
 | |
|      slv->desc = desc;
 | |
|      slv->bufferedp = bufferedp;
 | |
|      REGISTER_SOLVER(plnr, &(slv->super.super));
 | |
|      if (X(mksolver_ct_hook)) {
 | |
| 	  slv = (S *)X(mksolver_ct_hook)(sizeof(S), desc->radix,
 | |
| 					 dec, mkcldw, 0);
 | |
| 	  slv->k = codelet;
 | |
| 	  slv->desc = desc;
 | |
| 	  slv->bufferedp = bufferedp;
 | |
| 	  REGISTER_SOLVER(plnr, &(slv->super.super));
 | |
|      }
 | |
| }
 | |
| 
 | |
| void X(regsolver_ct_directw)(planner *plnr, kdftw codelet,
 | |
| 			     const ct_desc *desc, int dec)
 | |
| {
 | |
|      regone(plnr, codelet, desc, dec, /* bufferedp */ 0);
 | |
|      regone(plnr, codelet, desc, dec, /* bufferedp */ 1);
 | |
| }
 | 
