328 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			328 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "dft/dft.h"
 | |
| 
 | |
| /*
 | |
|  * Compute transforms of prime sizes using Rader's trick: turn them
 | |
|  * into convolutions of size n - 1, which you then perform via a pair
 | |
|  * of FFTs.
 | |
|  */
 | |
| 
 | |
| typedef struct {
 | |
|      solver super;
 | |
| } S;
 | |
| 
 | |
| typedef struct {
 | |
|      plan_dft super;
 | |
| 
 | |
|      plan *cld1, *cld2;
 | |
|      R *omega;
 | |
|      INT n, g, ginv;
 | |
|      INT is, os;
 | |
|      plan *cld_omega;
 | |
| } P;
 | |
| 
 | |
| static rader_tl *omegas = 0;
 | |
| 
 | |
| static R *mkomega(enum wakefulness wakefulness, plan *p_, INT n, INT ginv)
 | |
| {
 | |
|      plan_dft *p = (plan_dft *) p_;
 | |
|      R *omega;
 | |
|      INT i, gpower;
 | |
|      trigreal scale;
 | |
|      triggen *t;
 | |
| 
 | |
|      if ((omega = X(rader_tl_find)(n, n, ginv, omegas)))
 | |
| 	  return omega;
 | |
| 
 | |
|      omega = (R *)MALLOC(sizeof(R) * (n - 1) * 2, TWIDDLES);
 | |
| 
 | |
|      scale = n - 1.0; /* normalization for convolution */
 | |
| 
 | |
|      t = X(mktriggen)(wakefulness, n);
 | |
|      for (i = 0, gpower = 1; i < n-1; ++i, gpower = MULMOD(gpower, ginv, n)) {
 | |
| 	  trigreal w[2];
 | |
| 	  t->cexpl(t, gpower, w);
 | |
| 	  omega[2*i] = w[0] / scale;
 | |
| 	  omega[2*i+1] = FFT_SIGN * w[1] / scale;
 | |
|      }
 | |
|      X(triggen_destroy)(t);
 | |
|      A(gpower == 1);
 | |
| 
 | |
|      p->apply(p_, omega, omega + 1, omega, omega + 1);
 | |
| 
 | |
|      X(rader_tl_insert)(n, n, ginv, omega, &omegas);
 | |
|      return omega;
 | |
| }
 | |
| 
 | |
| static void free_omega(R *omega)
 | |
| {
 | |
|      X(rader_tl_delete)(omega, &omegas);
 | |
| }
 | |
| 
 | |
| 
 | |
| /***************************************************************************/
 | |
| 
 | |
| /* Below, we extensively use the identity that fft(x*)* = ifft(x) in
 | |
|    order to share data between forward and backward transforms and to
 | |
|    obviate the necessity of having separate forward and backward
 | |
|    plans.  (Although we often compute separate plans these days anyway
 | |
|    due to the differing strides, etcetera.)
 | |
| 
 | |
|    Of course, since the new FFTW gives us separate pointers to
 | |
|    the real and imaginary parts, we could have instead used the
 | |
|    fft(r,i) = ifft(i,r) form of this identity, but it was easier to
 | |
|    reuse the code from our old version. */
 | |
| 
 | |
| static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
|      INT is, os;
 | |
|      INT k, gpower, g, r;
 | |
|      R *buf;
 | |
|      R r0 = ri[0], i0 = ii[0];
 | |
| 
 | |
|      r = ego->n; is = ego->is; os = ego->os; g = ego->g; 
 | |
|      buf = (R *) MALLOC(sizeof(R) * (r - 1) * 2, BUFFERS);
 | |
| 
 | |
|      /* First, permute the input, storing in buf: */
 | |
|      for (gpower = 1, k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, g, r)) {
 | |
| 	  R rA, iA;
 | |
| 	  rA = ri[gpower * is];
 | |
| 	  iA = ii[gpower * is];
 | |
| 	  buf[2*k] = rA; buf[2*k + 1] = iA;
 | |
|      }
 | |
|      /* gpower == g^(r-1) mod r == 1 */;
 | |
| 
 | |
| 
 | |
|      /* compute DFT of buf, storing in output (except DC): */
 | |
|      {
 | |
| 	    plan_dft *cld = (plan_dft *) ego->cld1;
 | |
| 	    cld->apply(ego->cld1, buf, buf+1, ro+os, io+os);
 | |
|      }
 | |
| 
 | |
|      /* set output DC component: */
 | |
|      {
 | |
| 	  ro[0] = r0 + ro[os];
 | |
| 	  io[0] = i0 + io[os];
 | |
|      }
 | |
| 
 | |
|      /* now, multiply by omega: */
 | |
|      {
 | |
| 	  const R *omega = ego->omega;
 | |
| 	  for (k = 0; k < r - 1; ++k) {
 | |
| 	       E rB, iB, rW, iW;
 | |
| 	       rW = omega[2*k];
 | |
| 	       iW = omega[2*k+1];
 | |
| 	       rB = ro[(k+1)*os];
 | |
| 	       iB = io[(k+1)*os];
 | |
| 	       ro[(k+1)*os] = rW * rB - iW * iB;
 | |
| 	       io[(k+1)*os] = -(rW * iB + iW * rB);
 | |
| 	  }
 | |
|      }
 | |
|      
 | |
|      /* this will add input[0] to all of the outputs after the ifft */
 | |
|      ro[os] += r0;
 | |
|      io[os] -= i0;
 | |
| 
 | |
|      /* inverse FFT: */
 | |
|      {
 | |
| 	    plan_dft *cld = (plan_dft *) ego->cld2;
 | |
| 	    cld->apply(ego->cld2, ro+os, io+os, buf, buf+1);
 | |
|      }
 | |
|      
 | |
|      /* finally, do inverse permutation to unshuffle the output: */
 | |
|      {
 | |
| 	  INT ginv = ego->ginv;
 | |
| 	  gpower = 1;
 | |
| 	  for (k = 0; k < r - 1; ++k, gpower = MULMOD(gpower, ginv, r)) {
 | |
| 	       ro[gpower * os] = buf[2*k];
 | |
| 	       io[gpower * os] = -buf[2*k+1];
 | |
| 	  }
 | |
| 	  A(gpower == 1);
 | |
|      }
 | |
| 
 | |
| 
 | |
|      X(ifree)(buf);
 | |
| }
 | |
| 
 | |
| /***************************************************************************/
 | |
| 
 | |
| static void awake(plan *ego_, enum wakefulness wakefulness)
 | |
| {
 | |
|      P *ego = (P *) ego_;
 | |
| 
 | |
|      X(plan_awake)(ego->cld1, wakefulness);
 | |
|      X(plan_awake)(ego->cld2, wakefulness);
 | |
|      X(plan_awake)(ego->cld_omega, wakefulness);
 | |
| 
 | |
|      switch (wakefulness) {
 | |
| 	 case SLEEPY:
 | |
| 	      free_omega(ego->omega);
 | |
| 	      ego->omega = 0;
 | |
| 	      break;
 | |
| 	 default:
 | |
| 	      ego->g = X(find_generator)(ego->n);
 | |
| 	      ego->ginv = X(power_mod)(ego->g, ego->n - 2, ego->n);
 | |
| 	      A(MULMOD(ego->g, ego->ginv, ego->n) == 1);
 | |
| 
 | |
| 	      ego->omega = mkomega(wakefulness,
 | |
| 				   ego->cld_omega, ego->n, ego->ginv);
 | |
| 	      break;
 | |
|      }
 | |
| }
 | |
| 
 | |
| static void destroy(plan *ego_)
 | |
| {
 | |
|      P *ego = (P *) ego_;
 | |
|      X(plan_destroy_internal)(ego->cld_omega);
 | |
|      X(plan_destroy_internal)(ego->cld2);
 | |
|      X(plan_destroy_internal)(ego->cld1);
 | |
| }
 | |
| 
 | |
| static void print(const plan *ego_, printer *p)
 | |
| {
 | |
|      const P *ego = (const P *)ego_;
 | |
|      p->print(p, "(dft-rader-%D%ois=%oos=%(%p%)",
 | |
|               ego->n, ego->is, ego->os, ego->cld1);
 | |
|      if (ego->cld2 != ego->cld1)
 | |
|           p->print(p, "%(%p%)", ego->cld2);
 | |
|      if (ego->cld_omega != ego->cld1 && ego->cld_omega != ego->cld2)
 | |
|           p->print(p, "%(%p%)", ego->cld_omega);
 | |
|      p->putchr(p, ')');
 | |
| }
 | |
| 
 | |
| static int applicable(const solver *ego_, const problem *p_,
 | |
| 		      const planner *plnr)
 | |
| {
 | |
|      const problem_dft *p = (const problem_dft *) p_;
 | |
|      UNUSED(ego_);
 | |
|      return (1
 | |
| 	     && p->sz->rnk == 1
 | |
| 	     && p->vecsz->rnk == 0
 | |
| 	     && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > RADER_MAX_SLOW)
 | |
| 	     && X(is_prime)(p->sz->dims[0].n)
 | |
| 
 | |
| 	     /* proclaim the solver SLOW if p-1 is not easily factorizable.
 | |
| 		Bluestein should take care of this case. */
 | |
| 	     && CIMPLIES(NO_SLOWP(plnr), X(factors_into_small_primes)(p->sz->dims[0].n - 1))
 | |
| 	  );
 | |
| }
 | |
| 
 | |
| static int mkP(P *pln, INT n, INT is, INT os, R *ro, R *io,
 | |
| 	       planner *plnr)
 | |
| {
 | |
|      plan *cld1 = (plan *) 0;
 | |
|      plan *cld2 = (plan *) 0;
 | |
|      plan *cld_omega = (plan *) 0;
 | |
|      R *buf = (R *) 0;
 | |
| 
 | |
|      /* initial allocation for the purpose of planning */
 | |
|      buf = (R *) MALLOC(sizeof(R) * (n - 1) * 2, BUFFERS);
 | |
| 
 | |
|      cld1 = X(mkplan_f_d)(plnr, 
 | |
| 			  X(mkproblem_dft_d)(X(mktensor_1d)(n - 1, 2, os),
 | |
| 					     X(mktensor_1d)(1, 0, 0),
 | |
| 					     buf, buf + 1, ro + os, io + os),
 | |
| 			  NO_SLOW, 0, 0);
 | |
|      if (!cld1) goto nada;
 | |
| 
 | |
|      cld2 = X(mkplan_f_d)(plnr, 
 | |
| 			  X(mkproblem_dft_d)(X(mktensor_1d)(n - 1, os, 2),
 | |
| 					     X(mktensor_1d)(1, 0, 0),
 | |
| 					     ro + os, io + os, buf, buf + 1),
 | |
| 			  NO_SLOW, 0, 0);
 | |
| 
 | |
|      if (!cld2) goto nada;
 | |
| 
 | |
|      /* plan for omega array */
 | |
|      cld_omega = X(mkplan_f_d)(plnr, 
 | |
| 			       X(mkproblem_dft_d)(X(mktensor_1d)(n - 1, 2, 2),
 | |
| 						  X(mktensor_1d)(1, 0, 0),
 | |
| 						  buf, buf + 1, buf, buf + 1),
 | |
| 			       NO_SLOW, ESTIMATE, 0);
 | |
|      if (!cld_omega) goto nada;
 | |
| 
 | |
|      /* deallocate buffers; let awake() or apply() allocate them for real */
 | |
|      X(ifree)(buf);
 | |
|      buf = 0;
 | |
| 
 | |
|      pln->cld1 = cld1;
 | |
|      pln->cld2 = cld2;
 | |
|      pln->cld_omega = cld_omega;
 | |
|      pln->omega = 0;
 | |
|      pln->n = n;
 | |
|      pln->is = is;
 | |
|      pln->os = os;
 | |
| 
 | |
|      X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
 | |
|      pln->super.super.ops.other += (n - 1) * (4 * 2 + 6) + 6;
 | |
|      pln->super.super.ops.add += (n - 1) * 2 + 4;
 | |
|      pln->super.super.ops.mul += (n - 1) * 4;
 | |
| 
 | |
|      return 1;
 | |
| 
 | |
|  nada:
 | |
|      X(ifree0)(buf);
 | |
|      X(plan_destroy_internal)(cld_omega);
 | |
|      X(plan_destroy_internal)(cld2);
 | |
|      X(plan_destroy_internal)(cld1);
 | |
|      return 0;
 | |
| }
 | |
| 
 | |
| static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
 | |
| {
 | |
|      const problem_dft *p = (const problem_dft *) p_;
 | |
|      P *pln;
 | |
|      INT n;
 | |
|      INT is, os;
 | |
| 
 | |
|      static const plan_adt padt = {
 | |
| 	  X(dft_solve), awake, print, destroy
 | |
|      };
 | |
| 
 | |
|      if (!applicable(ego, p_, plnr))
 | |
| 	  return (plan *) 0;
 | |
| 
 | |
|      n = p->sz->dims[0].n;
 | |
|      is = p->sz->dims[0].is;
 | |
|      os = p->sz->dims[0].os;
 | |
| 
 | |
|      pln = MKPLAN_DFT(P, &padt, apply);
 | |
|      if (!mkP(pln, n, is, os, p->ro, p->io, plnr)) {
 | |
| 	  X(ifree)(pln);
 | |
| 	  return (plan *) 0;
 | |
|      }
 | |
|      return &(pln->super.super);
 | |
| }
 | |
| 
 | |
| static solver *mksolver(void)
 | |
| {
 | |
|      static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
 | |
|      S *slv = MKSOLVER(S, &sadt);
 | |
|      return &(slv->super);
 | |
| }
 | |
| 
 | |
| void X(dft_rader_register)(planner *p)
 | |
| {
 | |
|      REGISTER_SOLVER(p, mksolver());
 | |
| }
 | 
