210 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			210 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /* This file was automatically generated --- DO NOT EDIT */
 | |
| /* Generated on Tue Sep 14 10:47:00 EDT 2021 */
 | |
| 
 | |
| #include "rdft/codelet-rdft.h"
 | |
| 
 | |
| #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cbIII_9 -dft-III -include rdft/scalar/r2cbIII.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 32 FP additions, 24 FP multiplications,
 | |
|  * (or, 8 additions, 0 multiplications, 24 fused multiply/add),
 | |
|  * 35 stack variables, 12 constants, and 18 memory accesses
 | |
|  */
 | |
| #include "rdft/scalar/r2cbIII.h"
 | |
| 
 | |
| static void r2cbIII_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
 | |
| {
 | |
|      DK(KP1_705737063, +1.705737063904886419256501927880148143872040591);
 | |
|      DK(KP1_969615506, +1.969615506024416118733486049179046027341286503);
 | |
|      DK(KP984807753, +0.984807753012208059366743024589523013670643252);
 | |
|      DK(KP176326980, +0.176326980708464973471090386868618986121633062);
 | |
|      DK(KP1_326827896, +1.326827896337876792410842639271782594433726619);
 | |
|      DK(KP1_532088886, +1.532088886237956070404785301110833347871664914);
 | |
|      DK(KP766044443, +0.766044443118978035202392650555416673935832457);
 | |
|      DK(KP839099631, +0.839099631177280011763127298123181364687434283);
 | |
|      DK(KP866025403, +0.866025403784438646763723170752936183471402627);
 | |
|      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
 | |
|      DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
 | |
|      DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
 | |
|      {
 | |
| 	  INT i;
 | |
| 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
 | |
| 	       E T3, Tr, Th, Td, Tc, T8, Tn, Ts, Tk, Tt, T9, Te;
 | |
| 	       {
 | |
| 		    E Tg, T1, T2, Tf;
 | |
| 		    Tg = Ci[WS(csi, 1)];
 | |
| 		    T1 = Cr[WS(csr, 4)];
 | |
| 		    T2 = Cr[WS(csr, 1)];
 | |
| 		    Tf = T2 - T1;
 | |
| 		    T3 = FMA(KP2_000000000, T2, T1);
 | |
| 		    Tr = FMA(KP1_732050807, Tg, Tf);
 | |
| 		    Th = FNMS(KP1_732050807, Tg, Tf);
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T4, T7, Tm, Tj, Tl, Ti;
 | |
| 		    T4 = Cr[WS(csr, 3)];
 | |
| 		    Td = Ci[WS(csi, 3)];
 | |
| 		    {
 | |
| 			 E T5, T6, Ta, Tb;
 | |
| 			 T5 = Cr[0];
 | |
| 			 T6 = Cr[WS(csr, 2)];
 | |
| 			 T7 = T5 + T6;
 | |
| 			 Tm = T5 - T6;
 | |
| 			 Ta = Ci[WS(csi, 2)];
 | |
| 			 Tb = Ci[0];
 | |
| 			 Tc = Ta - Tb;
 | |
| 			 Tj = Tb + Ta;
 | |
| 		    }
 | |
| 		    T8 = T4 + T7;
 | |
| 		    Tl = FMA(KP500000000, Tc, Td);
 | |
| 		    Tn = FNMS(KP866025403, Tm, Tl);
 | |
| 		    Ts = FMA(KP866025403, Tm, Tl);
 | |
| 		    Ti = FNMS(KP500000000, T7, T4);
 | |
| 		    Tk = FMA(KP866025403, Tj, Ti);
 | |
| 		    Tt = FNMS(KP866025403, Tj, Ti);
 | |
| 	       }
 | |
| 	       R0[0] = FMA(KP2_000000000, T8, T3);
 | |
| 	       T9 = T8 - T3;
 | |
| 	       Te = Tc - Td;
 | |
| 	       R1[WS(rs, 1)] = FMA(KP1_732050807, Te, T9);
 | |
| 	       R0[WS(rs, 3)] = FMS(KP1_732050807, Te, T9);
 | |
| 	       {
 | |
| 		    E Tq, To, Tp, Tw, Tu, Tv;
 | |
| 		    Tq = FNMS(KP839099631, Tk, Tn);
 | |
| 		    To = FMA(KP839099631, Tn, Tk);
 | |
| 		    Tp = FMA(KP766044443, To, Th);
 | |
| 		    R1[0] = FNMS(KP1_532088886, To, Th);
 | |
| 		    R1[WS(rs, 3)] = FMA(KP1_326827896, Tq, Tp);
 | |
| 		    R0[WS(rs, 2)] = FMS(KP1_326827896, Tq, Tp);
 | |
| 		    Tw = FNMS(KP176326980, Ts, Tt);
 | |
| 		    Tu = FMA(KP176326980, Tt, Ts);
 | |
| 		    Tv = FMA(KP984807753, Tu, Tr);
 | |
| 		    R0[WS(rs, 1)] = FMS(KP1_969615506, Tu, Tr);
 | |
| 		    R1[WS(rs, 2)] = FMA(KP1_705737063, Tw, Tv);
 | |
| 		    R0[WS(rs, 4)] = FMS(KP1_705737063, Tw, Tv);
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const kr2c_desc desc = { 9, "r2cbIII_9", { 8, 0, 24, 0 }, &GENUS };
 | |
| 
 | |
| void X(codelet_r2cbIII_9) (planner *p) { X(kr2c_register) (p, r2cbIII_9, &desc);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cbIII_9 -dft-III -include rdft/scalar/r2cbIII.h */
 | |
| 
 | |
| /*
 | |
|  * This function contains 32 FP additions, 18 FP multiplications,
 | |
|  * (or, 22 additions, 8 multiplications, 10 fused multiply/add),
 | |
|  * 35 stack variables, 12 constants, and 18 memory accesses
 | |
|  */
 | |
| #include "rdft/scalar/r2cbIII.h"
 | |
| 
 | |
| static void r2cbIII_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
 | |
| {
 | |
|      DK(KP642787609, +0.642787609686539326322643409907263432907559884);
 | |
|      DK(KP766044443, +0.766044443118978035202392650555416673935832457);
 | |
|      DK(KP1_326827896, +1.326827896337876792410842639271782594433726619);
 | |
|      DK(KP1_113340798, +1.113340798452838732905825904094046265936583811);
 | |
|      DK(KP984807753, +0.984807753012208059366743024589523013670643252);
 | |
|      DK(KP173648177, +0.173648177666930348851716626769314796000375677);
 | |
|      DK(KP1_705737063, +1.705737063904886419256501927880148143872040591);
 | |
|      DK(KP300767466, +0.300767466360870593278543795225003852144476517);
 | |
|      DK(KP500000000, +0.500000000000000000000000000000000000000000000);
 | |
|      DK(KP866025403, +0.866025403784438646763723170752936183471402627);
 | |
|      DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
 | |
|      DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
 | |
|      {
 | |
| 	  INT i;
 | |
| 	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
 | |
| 	       E T3, Ts, Ti, Td, Tc, T8, To, Tu, Tl, Tt, T9, Te;
 | |
| 	       {
 | |
| 		    E Th, T1, T2, Tf, Tg;
 | |
| 		    Tg = Ci[WS(csi, 1)];
 | |
| 		    Th = KP1_732050807 * Tg;
 | |
| 		    T1 = Cr[WS(csr, 4)];
 | |
| 		    T2 = Cr[WS(csr, 1)];
 | |
| 		    Tf = T2 - T1;
 | |
| 		    T3 = FMA(KP2_000000000, T2, T1);
 | |
| 		    Ts = Tf - Th;
 | |
| 		    Ti = Tf + Th;
 | |
| 	       }
 | |
| 	       {
 | |
| 		    E T4, T7, Tm, Tk, Tn, Tj;
 | |
| 		    T4 = Cr[WS(csr, 3)];
 | |
| 		    Td = Ci[WS(csi, 3)];
 | |
| 		    {
 | |
| 			 E T5, T6, Ta, Tb;
 | |
| 			 T5 = Cr[0];
 | |
| 			 T6 = Cr[WS(csr, 2)];
 | |
| 			 T7 = T5 + T6;
 | |
| 			 Tm = KP866025403 * (T6 - T5);
 | |
| 			 Ta = Ci[WS(csi, 2)];
 | |
| 			 Tb = Ci[0];
 | |
| 			 Tc = Ta - Tb;
 | |
| 			 Tk = KP866025403 * (Tb + Ta);
 | |
| 		    }
 | |
| 		    T8 = T4 + T7;
 | |
| 		    Tn = FMA(KP500000000, Tc, Td);
 | |
| 		    To = Tm - Tn;
 | |
| 		    Tu = Tm + Tn;
 | |
| 		    Tj = FMS(KP500000000, T7, T4);
 | |
| 		    Tl = Tj + Tk;
 | |
| 		    Tt = Tj - Tk;
 | |
| 	       }
 | |
| 	       R0[0] = FMA(KP2_000000000, T8, T3);
 | |
| 	       T9 = T8 - T3;
 | |
| 	       Te = KP1_732050807 * (Tc - Td);
 | |
| 	       R1[WS(rs, 1)] = T9 + Te;
 | |
| 	       R0[WS(rs, 3)] = Te - T9;
 | |
| 	       {
 | |
| 		    E Tr, Tp, Tq, Tx, Tv, Tw;
 | |
| 		    Tr = FNMS(KP1_705737063, Tl, KP300767466 * To);
 | |
| 		    Tp = FMA(KP173648177, Tl, KP984807753 * To);
 | |
| 		    Tq = Ti - Tp;
 | |
| 		    R0[WS(rs, 1)] = -(FMA(KP2_000000000, Tp, Ti));
 | |
| 		    R0[WS(rs, 4)] = Tr - Tq;
 | |
| 		    R1[WS(rs, 2)] = Tq + Tr;
 | |
| 		    Tx = FMA(KP1_113340798, Tt, KP1_326827896 * Tu);
 | |
| 		    Tv = FNMS(KP642787609, Tu, KP766044443 * Tt);
 | |
| 		    Tw = Tv - Ts;
 | |
| 		    R1[0] = FMA(KP2_000000000, Tv, Ts);
 | |
| 		    R1[WS(rs, 3)] = Tx - Tw;
 | |
| 		    R0[WS(rs, 2)] = Tw + Tx;
 | |
| 	       }
 | |
| 	  }
 | |
|      }
 | |
| }
 | |
| 
 | |
| static const kr2c_desc desc = { 9, "r2cbIII_9", { 22, 8, 10, 0 }, &GENUS };
 | |
| 
 | |
| void X(codelet_r2cbIII_9) (planner *p) { X(kr2c_register) (p, r2cbIII_9, &desc);
 | |
| }
 | |
| 
 | |
| #endif
 | 
