furnace/extern/libsndfile-modified/src/G72x/g72x.c
tildearrow 061991fe60 desubmodulize libsndfile - PLEASE READ
it appears a one-character typo in the cmake_minimum_required line prevents it from compiling under CMake 4.0.
in order to fix that, I had to take this thing out of submodules...

it is recommended to do this after you pull;

git submodule deinit extern/libsndfile
2025-04-02 15:09:53 -05:00

646 lines
17 KiB
C

/*
* This source code is a product of Sun Microsystems, Inc. and is provided
* for unrestricted use. Users may copy or modify this source code without
* charge.
*
* SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
* THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
*
* Sun source code is provided with no support and without any obligation on
* the part of Sun Microsystems, Inc. to assist in its use, correction,
* modification or enhancement.
*
* SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
* INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
* OR ANY PART THEREOF.
*
* In no event will Sun Microsystems, Inc. be liable for any lost revenue
* or profits or other special, indirect and consequential damages, even if
* Sun has been advised of the possibility of such damages.
*
* Sun Microsystems, Inc.
* 2550 Garcia Avenue
* Mountain View, California 94043
*/
/*
* g72x.c
*
* Common routines for G.721 and G.723 conversions.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "g72x.h"
#include "g72x_priv.h"
static G72x_STATE * g72x_state_new (void) ;
static int unpack_bytes (int bits, int blocksize, const unsigned char * block, short * samples) ;
static int pack_bytes (int bits, const short * samples, unsigned char * block) ;
static
short power2 [15] =
{ 1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000
} ;
/*
* quan ()
*
* quantizes the input val against the table of size short integers.
* It returns i if table [i - 1] <= val < table [i].
*
* Using linear search for simple coding.
*/
static
int quan (int val, short *table, int size)
{
int i ;
for (i = 0 ; i < size ; i++)
if (val < *table++)
break ;
return i ;
}
/*
* fmult ()
*
* returns the integer product of the 14-bit integer "an" and
* "floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
*/
static
int fmult (int an, int srn)
{
short anmag, anexp, anmant ;
short wanexp, wanmant ;
short retval ;
anmag = (an > 0) ? an : ((-an) & 0x1FFF) ;
anexp = quan (anmag, power2, 15) - 6 ;
anmant = (anmag == 0) ? 32 :
(anexp >= 0) ? anmag >> anexp : anmag << -anexp ;
wanexp = anexp + ((srn >> 6) & 0xF) - 13 ;
/*
** The original was :
** wanmant = (anmant * (srn & 0x3F) + 0x30) >> 4 ;
** but could see no valid reason for the + 0x30.
** Removed it and it improved the SNR of the codec.
*/
wanmant = (anmant * (srn & 0x3F)) >> 4 ;
retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) : (wanmant >> -wanexp) ;
return (((an ^ srn) < 0) ? -retval : retval) ;
}
static G72x_STATE * g72x_state_new (void)
{ return calloc (1, sizeof (G72x_STATE)) ;
}
/*
* private_init_state ()
*
* This routine initializes and/or resets the G72x_PRIVATE structure
* pointed to by 'state_ptr'.
* All the initial state values are specified in the CCITT G.721 document.
*/
void private_init_state (G72x_STATE *state_ptr)
{
int cnta ;
state_ptr->yl = 34816 ;
state_ptr->yu = 544 ;
state_ptr->dms = 0 ;
state_ptr->dml = 0 ;
state_ptr->ap = 0 ;
for (cnta = 0 ; cnta < 2 ; cnta++)
{ state_ptr->a [cnta] = 0 ;
state_ptr->pk [cnta] = 0 ;
state_ptr->sr [cnta] = 32 ;
}
for (cnta = 0 ; cnta < 6 ; cnta++)
{ state_ptr->b [cnta] = 0 ;
state_ptr->dq [cnta] = 32 ;
}
state_ptr->td = 0 ;
} /* private_init_state */
struct g72x_state * g72x_reader_init (int codec, int *blocksize, int *samplesperblock)
{ G72x_STATE *pstate ;
if ((pstate = g72x_state_new ()) == NULL)
return NULL ;
private_init_state (pstate) ;
pstate->encoder = NULL ;
switch (codec)
{ case G723_16_BITS_PER_SAMPLE : /* 2 bits per sample. */
pstate->decoder = g723_16_decoder ;
*blocksize = G723_16_BYTES_PER_BLOCK ;
*samplesperblock = G723_16_SAMPLES_PER_BLOCK ;
pstate->codec_bits = 2 ;
pstate->blocksize = G723_16_BYTES_PER_BLOCK ;
pstate->samplesperblock = G723_16_SAMPLES_PER_BLOCK ;
break ;
case G723_24_BITS_PER_SAMPLE : /* 3 bits per sample. */
pstate->decoder = g723_24_decoder ;
*blocksize = G723_24_BYTES_PER_BLOCK ;
*samplesperblock = G723_24_SAMPLES_PER_BLOCK ;
pstate->codec_bits = 3 ;
pstate->blocksize = G723_24_BYTES_PER_BLOCK ;
pstate->samplesperblock = G723_24_SAMPLES_PER_BLOCK ;
break ;
case G721_32_BITS_PER_SAMPLE : /* 4 bits per sample. */
pstate->decoder = g721_decoder ;
*blocksize = G721_32_BYTES_PER_BLOCK ;
*samplesperblock = G721_32_SAMPLES_PER_BLOCK ;
pstate->codec_bits = 4 ;
pstate->blocksize = G721_32_BYTES_PER_BLOCK ;
pstate->samplesperblock = G721_32_SAMPLES_PER_BLOCK ;
break ;
case G721_40_BITS_PER_SAMPLE : /* 5 bits per sample. */
pstate->decoder = g723_40_decoder ;
*blocksize = G721_40_BYTES_PER_BLOCK ;
*samplesperblock = G721_40_SAMPLES_PER_BLOCK ;
pstate->codec_bits = 5 ;
pstate->blocksize = G721_40_BYTES_PER_BLOCK ;
pstate->samplesperblock = G721_40_SAMPLES_PER_BLOCK ;
break ;
default :
free (pstate) ;
return NULL ;
} ;
return pstate ;
} /* g72x_reader_init */
struct g72x_state * g72x_writer_init (int codec, int *blocksize, int *samplesperblock)
{ G72x_STATE *pstate ;
if ((pstate = g72x_state_new ()) == NULL)
return NULL ;
private_init_state (pstate) ;
pstate->decoder = NULL ;
switch (codec)
{ case G723_16_BITS_PER_SAMPLE : /* 2 bits per sample. */
pstate->encoder = g723_16_encoder ;
*blocksize = G723_16_BYTES_PER_BLOCK ;
*samplesperblock = G723_16_SAMPLES_PER_BLOCK ;
pstate->codec_bits = 2 ;
pstate->blocksize = G723_16_BYTES_PER_BLOCK ;
pstate->samplesperblock = G723_16_SAMPLES_PER_BLOCK ;
break ;
case G723_24_BITS_PER_SAMPLE : /* 3 bits per sample. */
pstate->encoder = g723_24_encoder ;
*blocksize = G723_24_BYTES_PER_BLOCK ;
*samplesperblock = G723_24_SAMPLES_PER_BLOCK ;
pstate->codec_bits = 3 ;
pstate->blocksize = G723_24_BYTES_PER_BLOCK ;
pstate->samplesperblock = G723_24_SAMPLES_PER_BLOCK ;
break ;
case G721_32_BITS_PER_SAMPLE : /* 4 bits per sample. */
pstate->encoder = g721_encoder ;
*blocksize = G721_32_BYTES_PER_BLOCK ;
*samplesperblock = G721_32_SAMPLES_PER_BLOCK ;
pstate->codec_bits = 4 ;
pstate->blocksize = G721_32_BYTES_PER_BLOCK ;
pstate->samplesperblock = G721_32_SAMPLES_PER_BLOCK ;
break ;
case G721_40_BITS_PER_SAMPLE : /* 5 bits per sample. */
pstate->encoder = g723_40_encoder ;
*blocksize = G721_40_BYTES_PER_BLOCK ;
*samplesperblock = G721_40_SAMPLES_PER_BLOCK ;
pstate->codec_bits = 5 ;
pstate->blocksize = G721_40_BYTES_PER_BLOCK ;
pstate->samplesperblock = G721_40_SAMPLES_PER_BLOCK ;
break ;
default :
free (pstate) ;
return NULL ;
} ;
return pstate ;
} /* g72x_writer_init */
int g72x_decode_block (G72x_STATE *pstate, const unsigned char *block, short *samples)
{ int k, count ;
count = unpack_bytes (pstate->codec_bits, pstate->blocksize, block, samples) ;
for (k = 0 ; k < count ; k++)
samples [k] = pstate->decoder (samples [k], pstate) ;
return 0 ;
} /* g72x_decode_block */
int g72x_encode_block (G72x_STATE *pstate, short *samples, unsigned char *block)
{ int k, count ;
for (k = 0 ; k < pstate->samplesperblock ; k++)
samples [k] = pstate->encoder (samples [k], pstate) ;
count = pack_bytes (pstate->codec_bits, samples, block) ;
return count ;
} /* g72x_encode_block */
/*
* predictor_zero ()
*
* computes the estimated signal from 6-zero predictor.
*
*/
int predictor_zero (G72x_STATE *state_ptr)
{
int i ;
int sezi ;
sezi = fmult (state_ptr->b [0] >> 2, state_ptr->dq [0]) ;
for (i = 1 ; i < 6 ; i++) /* ACCUM */
sezi += fmult (state_ptr->b [i] >> 2, state_ptr->dq [i]) ;
return sezi ;
}
/*
* predictor_pole ()
*
* computes the estimated signal from 2-pole predictor.
*
*/
int predictor_pole (G72x_STATE *state_ptr)
{
return (fmult (state_ptr->a [1] >> 2, state_ptr->sr [1]) +
fmult (state_ptr->a [0] >> 2, state_ptr->sr [0])) ;
}
/*
* step_size ()
*
* computes the quantization step size of the adaptive quantizer.
*
*/
int step_size (G72x_STATE *state_ptr)
{
int y ;
int dif ;
int al ;
if (state_ptr->ap >= 256)
return (state_ptr->yu) ;
else {
y = state_ptr->yl >> 6 ;
dif = state_ptr->yu - y ;
al = state_ptr->ap >> 2 ;
if (dif > 0)
y += (dif * al) >> 6 ;
else if (dif < 0)
y += (dif * al + 0x3F) >> 6 ;
return y ;
}
}
/*
* quantize ()
*
* Given a raw sample, 'd', of the difference signal and a
* quantization step size scale factor, 'y', this routine returns the
* ADPCM codeword to which that sample gets quantized. The step
* size scale factor division operation is done in the log base 2 domain
* as a subtraction.
*/
int quantize (
int d, /* Raw difference signal sample */
int y, /* Step size multiplier */
short *table, /* quantization table */
int size) /* table size of short integers */
{
short dqm ; /* Magnitude of 'd' */
short expon ; /* Integer part of base 2 log of 'd' */
short mant ; /* Fractional part of base 2 log */
short dl ; /* Log of magnitude of 'd' */
short dln ; /* Step size scale factor normalized log */
int i ;
/*
* LOG
*
* Compute base 2 log of 'd', and store in 'dl'.
*/
dqm = abs (d) ;
expon = quan (dqm >> 1, power2, 15) ;
mant = ((dqm << 7) >> expon) & 0x7F ; /* Fractional portion. */
dl = (expon << 7) + mant ;
/*
* SUBTB
*
* "Divide" by step size multiplier.
*/
dln = dl - (y >> 2) ;
/*
* QUAN
*
* Obtain codword i for 'd'.
*/
i = quan (dln, table, size) ;
if (d < 0) /* take 1's complement of i */
return ((size << 1) + 1 - i) ;
else if (i == 0) /* take 1's complement of 0 */
return ((size << 1) + 1) ; /* new in 1988 */
return i ;
}
/*
* reconstruct ()
*
* Returns reconstructed difference signal 'dq' obtained from
* codeword 'i' and quantization step size scale factor 'y'.
* Multiplication is performed in log base 2 domain as addition.
*/
int
reconstruct (
int sign, /* 0 for non-negative value */
int dqln, /* G.72x codeword */
int y) /* Step size multiplier */
{
short dql ; /* Log of 'dq' magnitude */
short dex ; /* Integer part of log */
short dqt ;
short dq ; /* Reconstructed difference signal sample */
dql = dqln + (y >> 2) ; /* ADDA */
if (dql < 0)
return ((sign) ? -0x8000 : 0) ;
else /* ANTILOG */
{ dex = (dql >> 7) & 15 ;
dqt = 128 + (dql & 127) ;
dq = (dqt << 7) >> (14 - dex) ;
return ((sign) ? (dq - 0x8000) : dq) ;
}
}
/*
* update ()
*
* updates the state variables for each output code
*/
void
update (
int code_size, /* distinguish 723_40 with others */
int y, /* quantizer step size */
int wi, /* scale factor multiplier */
int fi, /* for long/short term energies */
int dq, /* quantized prediction difference */
int sr, /* reconstructed signal */
int dqsez, /* difference from 2-pole predictor */
G72x_STATE *state_ptr) /* coder state pointer */
{
int cnt ;
short mag, expon ; /* Adaptive predictor, FLOAT A */
short a2p = 0 ; /* LIMC */
short a1ul ; /* UPA1 */
short pks1 ; /* UPA2 */
short fa1 ;
char tr ; /* tone/transition detector */
short ylint, thr2, dqthr ;
short ylfrac, thr1 ;
short pk0 ;
pk0 = (dqsez < 0) ? 1 : 0 ; /* needed in updating predictor poles */
mag = dq & 0x7FFF ; /* prediction difference magnitude */
/* TRANS */
ylint = state_ptr->yl >> 15 ; /* exponent part of yl */
ylfrac = (state_ptr->yl >> 10) & 0x1F ; /* fractional part of yl */
thr1 = (32 + ylfrac) << ylint ; /* threshold */
thr2 = (ylint > 9) ? 31 << 10 : thr1 ; /* limit thr2 to 31 << 10 */
dqthr = (thr2 + (thr2 >> 1)) >> 1 ; /* dqthr = 0.75 * thr2 */
if (state_ptr->td == 0) /* signal supposed voice */
tr = 0 ;
else if (mag <= dqthr) /* supposed data, but small mag */
tr = 0 ; /* treated as voice */
else /* signal is data (modem) */
tr = 1 ;
/*
* Quantizer scale factor adaptation.
*/
/* FUNCTW & FILTD & DELAY */
/* update non-steady state step size multiplier */
state_ptr->yu = y + ((wi - y) >> 5) ;
/* LIMB */
if (state_ptr->yu < 544) /* 544 <= yu <= 5120 */
state_ptr->yu = 544 ;
else if (state_ptr->yu > 5120)
state_ptr->yu = 5120 ;
/* FILTE & DELAY */
/* update steady state step size multiplier */
state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6) ;
/*
* Adaptive predictor coefficients.
*/
if (tr == 1) { /* reset a's and b's for modem signal */
state_ptr->a [0] = 0 ;
state_ptr->a [1] = 0 ;
state_ptr->b [0] = 0 ;
state_ptr->b [1] = 0 ;
state_ptr->b [2] = 0 ;
state_ptr->b [3] = 0 ;
state_ptr->b [4] = 0 ;
state_ptr->b [5] = 0 ;
}
else /* update a's and b's */
{ pks1 = pk0 ^ state_ptr->pk [0] ; /* UPA2 */
/* update predictor pole a [1] */
a2p = state_ptr->a [1] - (state_ptr->a [1] >> 7) ;
if (dqsez != 0)
{ fa1 = (pks1) ? state_ptr->a [0] : -state_ptr->a [0] ;
if (fa1 < -8191) /* a2p = function of fa1 */
a2p -= 0x100 ;
else if (fa1 > 8191)
a2p += 0xFF ;
else
a2p += fa1 >> 5 ;
if (pk0 ^ state_ptr->pk [1])
{ /* LIMC */
if (a2p <= -12160)
a2p = -12288 ;
else if (a2p >= 12416)
a2p = 12288 ;
else
a2p -= 0x80 ;
}
else if (a2p <= -12416)
a2p = -12288 ;
else if (a2p >= 12160)
a2p = 12288 ;
else
a2p += 0x80 ;
}
/* TRIGB & DELAY */
state_ptr->a [1] = a2p ;
/* UPA1 */
/* update predictor pole a [0] */
state_ptr->a [0] -= state_ptr->a [0] >> 8 ;
if (dqsez != 0)
{ if (pks1 == 0)
state_ptr->a [0] += 192 ;
else
state_ptr->a [0] -= 192 ;
} ;
/* LIMD */
a1ul = 15360 - a2p ;
if (state_ptr->a [0] < -a1ul)
state_ptr->a [0] = -a1ul ;
else if (state_ptr->a [0] > a1ul)
state_ptr->a [0] = a1ul ;
/* UPB : update predictor zeros b [6] */
for (cnt = 0 ; cnt < 6 ; cnt++)
{ if (code_size == 5) /* for 40Kbps G.723 */
state_ptr->b [cnt] -= state_ptr->b [cnt] >> 9 ;
else /* for G.721 and 24Kbps G.723 */
state_ptr->b [cnt] -= state_ptr->b [cnt] >> 8 ;
if (dq & 0x7FFF) /* XOR */
{ if ((dq ^ state_ptr->dq [cnt]) >= 0)
state_ptr->b [cnt] += 128 ;
else
state_ptr->b [cnt] -= 128 ;
}
}
}
for (cnt = 5 ; cnt > 0 ; cnt--)
state_ptr->dq [cnt] = state_ptr->dq [cnt - 1] ;
/* FLOAT A : convert dq [0] to 4-bit exp, 6-bit mantissa f.p. */
if (mag == 0)
state_ptr->dq [0] = (dq >= 0) ? 0x20 : 0xFC20 ;
else
{ expon = quan (mag, power2, 15) ;
state_ptr->dq [0] = (dq >= 0) ?
(expon << 6) + ((mag << 6) >> expon) :
(expon << 6) + ((mag << 6) >> expon) - 0x400 ;
}
state_ptr->sr [1] = state_ptr->sr [0] ;
/* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
if (sr == 0)
state_ptr->sr [0] = 0x20 ;
else if (sr > 0)
{ expon = quan (sr, power2, 15) ;
state_ptr->sr [0] = (expon << 6) + ((sr << 6) >> expon) ;
}
else if (sr > -32768)
{ mag = -sr ;
expon = quan (mag, power2, 15) ;
state_ptr->sr [0] = (expon << 6) + ((mag << 6) >> expon) - 0x400 ;
}
else
state_ptr->sr [0] = (short) 0xFC20 ;
/* DELAY A */
state_ptr->pk [1] = state_ptr->pk [0] ;
state_ptr->pk [0] = pk0 ;
/* TONE */
if (tr == 1) /* this sample has been treated as data */
state_ptr->td = 0 ; /* next one will be treated as voice */
else if (a2p < -11776) /* small sample-to-sample correlation */
state_ptr->td = 1 ; /* signal may be data */
else /* signal is voice */
state_ptr->td = 0 ;
/*
* Adaptation speed control.
*/
state_ptr->dms += (fi - state_ptr->dms) >> 5 ; /* FILTA */
state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7) ; /* FILTB */
if (tr == 1)
state_ptr->ap = 256 ;
else if (y < 1536) /* SUBTC */
state_ptr->ap += (0x200 - state_ptr->ap) >> 4 ;
else if (state_ptr->td == 1)
state_ptr->ap += (0x200 - state_ptr->ap) >> 4 ;
else if (abs ((state_ptr->dms << 2) - state_ptr->dml) >= (state_ptr->dml >> 3))
state_ptr->ap += (0x200 - state_ptr->ap) >> 4 ;
else
state_ptr->ap += (-state_ptr->ap) >> 4 ;
return ;
} /* update */
/*------------------------------------------------------------------------------
*/
static int
unpack_bytes (int bits, int blocksize, const unsigned char * block, short * samples)
{ unsigned int in_buffer = 0 ;
unsigned char in_byte ;
int k, in_bits = 0, bindex = 0 ;
for (k = 0 ; bindex <= blocksize && k < G72x_BLOCK_SIZE ; k++)
{ if (in_bits < bits)
{ in_byte = block [bindex++] ;
in_buffer |= (in_byte << in_bits) ;
in_bits += 8 ;
}
samples [k] = in_buffer & ((1 << bits) - 1) ;
in_buffer >>= bits ;
in_bits -= bits ;
} ;
return k ;
} /* unpack_bytes */
static int
pack_bytes (int bits, const short * samples, unsigned char * block)
{
unsigned int out_buffer = 0 ;
int k, bindex = 0, out_bits = 0 ;
unsigned char out_byte ;
for (k = 0 ; k < G72x_BLOCK_SIZE ; k++)
{ out_buffer |= (samples [k] << out_bits) ;
out_bits += bits ;
if (out_bits >= 8)
{ out_byte = out_buffer & 0xFF ;
out_bits -= 8 ;
out_buffer >>= 8 ;
block [bindex++] = out_byte ;
}
} ;
return bindex ;
} /* pack_bytes */