323 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			323 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 | 
						|
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
/* This file was automatically generated --- DO NOT EDIT */
 | 
						|
/* Generated on Tue Sep 14 10:45:29 EDT 2021 */
 | 
						|
 | 
						|
#include "dft/codelet-dft.h"
 | 
						|
 | 
						|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | 
						|
 | 
						|
/* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1fv_12 -include dft/simd/t1f.h */
 | 
						|
 | 
						|
/*
 | 
						|
 * This function contains 59 FP additions, 42 FP multiplications,
 | 
						|
 * (or, 41 additions, 24 multiplications, 18 fused multiply/add),
 | 
						|
 * 28 stack variables, 2 constants, and 24 memory accesses
 | 
						|
 */
 | 
						|
#include "dft/simd/t1f.h"
 | 
						|
 | 
						|
static void t1fv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
 | 
						|
{
 | 
						|
     DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
 | 
						|
     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
 | 
						|
     {
 | 
						|
	  INT m;
 | 
						|
	  R *x;
 | 
						|
	  x = ri;
 | 
						|
	  for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) {
 | 
						|
	       V T1, TC, T6, T7, Ty, Tq, Tz, TA, T9, TD, Te, Tf, Tu, Tl, Tv;
 | 
						|
	       V Tw;
 | 
						|
	       {
 | 
						|
		    V T5, T3, T4, T2;
 | 
						|
		    T1 = LD(&(x[0]), ms, &(x[0]));
 | 
						|
		    T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
 | 
						|
		    T5 = BYTWJ(&(W[TWVL * 14]), T4);
 | 
						|
		    T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
 | 
						|
		    T3 = BYTWJ(&(W[TWVL * 6]), T2);
 | 
						|
		    TC = VSUB(T5, T3);
 | 
						|
		    T6 = VADD(T3, T5);
 | 
						|
		    T7 = VFNMS(LDK(KP500000000), T6, T1);
 | 
						|
	       }
 | 
						|
	       {
 | 
						|
		    V Tn, Tp, Tm, Tx, To;
 | 
						|
		    Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
 | 
						|
		    Tn = BYTWJ(&(W[0]), Tm);
 | 
						|
		    Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
 | 
						|
		    Ty = BYTWJ(&(W[TWVL * 16]), Tx);
 | 
						|
		    To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
 | 
						|
		    Tp = BYTWJ(&(W[TWVL * 8]), To);
 | 
						|
		    Tq = VSUB(Tn, Tp);
 | 
						|
		    Tz = VADD(Tn, Tp);
 | 
						|
		    TA = VFNMS(LDK(KP500000000), Tz, Ty);
 | 
						|
	       }
 | 
						|
	       {
 | 
						|
		    V Td, Tb, T8, Tc, Ta;
 | 
						|
		    T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
 | 
						|
		    T9 = BYTWJ(&(W[TWVL * 10]), T8);
 | 
						|
		    Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
 | 
						|
		    Td = BYTWJ(&(W[TWVL * 2]), Tc);
 | 
						|
		    Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
 | 
						|
		    Tb = BYTWJ(&(W[TWVL * 18]), Ta);
 | 
						|
		    TD = VSUB(Td, Tb);
 | 
						|
		    Te = VADD(Tb, Td);
 | 
						|
		    Tf = VFNMS(LDK(KP500000000), Te, T9);
 | 
						|
	       }
 | 
						|
	       {
 | 
						|
		    V Ti, Tk, Th, Tt, Tj;
 | 
						|
		    Th = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
 | 
						|
		    Ti = BYTWJ(&(W[TWVL * 20]), Th);
 | 
						|
		    Tt = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
 | 
						|
		    Tu = BYTWJ(&(W[TWVL * 4]), Tt);
 | 
						|
		    Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
 | 
						|
		    Tk = BYTWJ(&(W[TWVL * 12]), Tj);
 | 
						|
		    Tl = VSUB(Ti, Tk);
 | 
						|
		    Tv = VADD(Tk, Ti);
 | 
						|
		    Tw = VFNMS(LDK(KP500000000), Tv, Tu);
 | 
						|
	       }
 | 
						|
	       {
 | 
						|
		    V Ts, TG, TF, TH;
 | 
						|
		    {
 | 
						|
			 V Tg, Tr, TB, TE;
 | 
						|
			 Tg = VSUB(T7, Tf);
 | 
						|
			 Tr = VADD(Tl, Tq);
 | 
						|
			 Ts = VFMA(LDK(KP866025403), Tr, Tg);
 | 
						|
			 TG = VFNMS(LDK(KP866025403), Tr, Tg);
 | 
						|
			 TB = VSUB(Tw, TA);
 | 
						|
			 TE = VSUB(TC, TD);
 | 
						|
			 TF = VFNMS(LDK(KP866025403), TE, TB);
 | 
						|
			 TH = VFMA(LDK(KP866025403), TE, TB);
 | 
						|
		    }
 | 
						|
		    ST(&(x[WS(rs, 1)]), VFNMSI(TF, Ts), ms, &(x[WS(rs, 1)]));
 | 
						|
		    ST(&(x[WS(rs, 7)]), VFMAI(TH, TG), ms, &(x[WS(rs, 1)]));
 | 
						|
		    ST(&(x[WS(rs, 11)]), VFMAI(TF, Ts), ms, &(x[WS(rs, 1)]));
 | 
						|
		    ST(&(x[WS(rs, 5)]), VFNMSI(TH, TG), ms, &(x[WS(rs, 1)]));
 | 
						|
	       }
 | 
						|
	       {
 | 
						|
		    V TS, TW, TV, TX;
 | 
						|
		    {
 | 
						|
			 V TQ, TR, TT, TU;
 | 
						|
			 TQ = VADD(T1, T6);
 | 
						|
			 TR = VADD(T9, Te);
 | 
						|
			 TS = VSUB(TQ, TR);
 | 
						|
			 TW = VADD(TQ, TR);
 | 
						|
			 TT = VADD(Tu, Tv);
 | 
						|
			 TU = VADD(Ty, Tz);
 | 
						|
			 TV = VSUB(TT, TU);
 | 
						|
			 TX = VADD(TT, TU);
 | 
						|
		    }
 | 
						|
		    ST(&(x[WS(rs, 9)]), VFNMSI(TV, TS), ms, &(x[WS(rs, 1)]));
 | 
						|
		    ST(&(x[0]), VADD(TW, TX), ms, &(x[0]));
 | 
						|
		    ST(&(x[WS(rs, 3)]), VFMAI(TV, TS), ms, &(x[WS(rs, 1)]));
 | 
						|
		    ST(&(x[WS(rs, 6)]), VSUB(TW, TX), ms, &(x[0]));
 | 
						|
	       }
 | 
						|
	       {
 | 
						|
		    V TK, TO, TN, TP;
 | 
						|
		    {
 | 
						|
			 V TI, TJ, TL, TM;
 | 
						|
			 TI = VADD(T7, Tf);
 | 
						|
			 TJ = VADD(Tw, TA);
 | 
						|
			 TK = VSUB(TI, TJ);
 | 
						|
			 TO = VADD(TI, TJ);
 | 
						|
			 TL = VSUB(Tl, Tq);
 | 
						|
			 TM = VADD(TC, TD);
 | 
						|
			 TN = VMUL(LDK(KP866025403), VSUB(TL, TM));
 | 
						|
			 TP = VMUL(LDK(KP866025403), VADD(TM, TL));
 | 
						|
		    }
 | 
						|
		    ST(&(x[WS(rs, 2)]), VFMAI(TN, TK), ms, &(x[0]));
 | 
						|
		    ST(&(x[WS(rs, 8)]), VFNMSI(TP, TO), ms, &(x[0]));
 | 
						|
		    ST(&(x[WS(rs, 10)]), VFNMSI(TN, TK), ms, &(x[0]));
 | 
						|
		    ST(&(x[WS(rs, 4)]), VFMAI(TP, TO), ms, &(x[0]));
 | 
						|
	       }
 | 
						|
	  }
 | 
						|
     }
 | 
						|
     VLEAVE();
 | 
						|
}
 | 
						|
 | 
						|
static const tw_instr twinstr[] = {
 | 
						|
     VTW(0, 1),
 | 
						|
     VTW(0, 2),
 | 
						|
     VTW(0, 3),
 | 
						|
     VTW(0, 4),
 | 
						|
     VTW(0, 5),
 | 
						|
     VTW(0, 6),
 | 
						|
     VTW(0, 7),
 | 
						|
     VTW(0, 8),
 | 
						|
     VTW(0, 9),
 | 
						|
     VTW(0, 10),
 | 
						|
     VTW(0, 11),
 | 
						|
     { TW_NEXT, VL, 0 }
 | 
						|
};
 | 
						|
 | 
						|
static const ct_desc desc = { 12, XSIMD_STRING("t1fv_12"), twinstr, &GENUS, { 41, 24, 18, 0 }, 0, 0, 0 };
 | 
						|
 | 
						|
void XSIMD(codelet_t1fv_12) (planner *p) {
 | 
						|
     X(kdft_dit_register) (p, t1fv_12, &desc);
 | 
						|
}
 | 
						|
#else
 | 
						|
 | 
						|
/* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1fv_12 -include dft/simd/t1f.h */
 | 
						|
 | 
						|
/*
 | 
						|
 * This function contains 59 FP additions, 30 FP multiplications,
 | 
						|
 * (or, 55 additions, 26 multiplications, 4 fused multiply/add),
 | 
						|
 * 28 stack variables, 2 constants, and 24 memory accesses
 | 
						|
 */
 | 
						|
#include "dft/simd/t1f.h"
 | 
						|
 | 
						|
static void t1fv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
 | 
						|
{
 | 
						|
     DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
 | 
						|
     DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
 | 
						|
     {
 | 
						|
	  INT m;
 | 
						|
	  R *x;
 | 
						|
	  x = ri;
 | 
						|
	  for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) {
 | 
						|
	       V T1, TH, T6, TA, Tq, TE, Tv, TL, T9, TI, Te, TB, Ti, TD, Tn;
 | 
						|
	       V TK;
 | 
						|
	       {
 | 
						|
		    V T5, T3, T4, T2;
 | 
						|
		    T1 = LD(&(x[0]), ms, &(x[0]));
 | 
						|
		    T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
 | 
						|
		    T5 = BYTWJ(&(W[TWVL * 14]), T4);
 | 
						|
		    T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
 | 
						|
		    T3 = BYTWJ(&(W[TWVL * 6]), T2);
 | 
						|
		    TH = VSUB(T5, T3);
 | 
						|
		    T6 = VADD(T3, T5);
 | 
						|
		    TA = VFNMS(LDK(KP500000000), T6, T1);
 | 
						|
	       }
 | 
						|
	       {
 | 
						|
		    V Tu, Ts, Tp, Tt, Tr;
 | 
						|
		    Tp = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
 | 
						|
		    Tq = BYTWJ(&(W[TWVL * 16]), Tp);
 | 
						|
		    Tt = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
 | 
						|
		    Tu = BYTWJ(&(W[TWVL * 8]), Tt);
 | 
						|
		    Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
 | 
						|
		    Ts = BYTWJ(&(W[0]), Tr);
 | 
						|
		    TE = VSUB(Tu, Ts);
 | 
						|
		    Tv = VADD(Ts, Tu);
 | 
						|
		    TL = VFNMS(LDK(KP500000000), Tv, Tq);
 | 
						|
	       }
 | 
						|
	       {
 | 
						|
		    V Td, Tb, T8, Tc, Ta;
 | 
						|
		    T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
 | 
						|
		    T9 = BYTWJ(&(W[TWVL * 10]), T8);
 | 
						|
		    Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
 | 
						|
		    Td = BYTWJ(&(W[TWVL * 2]), Tc);
 | 
						|
		    Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
 | 
						|
		    Tb = BYTWJ(&(W[TWVL * 18]), Ta);
 | 
						|
		    TI = VSUB(Td, Tb);
 | 
						|
		    Te = VADD(Tb, Td);
 | 
						|
		    TB = VFNMS(LDK(KP500000000), Te, T9);
 | 
						|
	       }
 | 
						|
	       {
 | 
						|
		    V Tm, Tk, Th, Tl, Tj;
 | 
						|
		    Th = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
 | 
						|
		    Ti = BYTWJ(&(W[TWVL * 4]), Th);
 | 
						|
		    Tl = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
 | 
						|
		    Tm = BYTWJ(&(W[TWVL * 20]), Tl);
 | 
						|
		    Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
 | 
						|
		    Tk = BYTWJ(&(W[TWVL * 12]), Tj);
 | 
						|
		    TD = VSUB(Tm, Tk);
 | 
						|
		    Tn = VADD(Tk, Tm);
 | 
						|
		    TK = VFNMS(LDK(KP500000000), Tn, Ti);
 | 
						|
	       }
 | 
						|
	       {
 | 
						|
		    V Tg, Ty, Tx, Tz;
 | 
						|
		    {
 | 
						|
			 V T7, Tf, To, Tw;
 | 
						|
			 T7 = VADD(T1, T6);
 | 
						|
			 Tf = VADD(T9, Te);
 | 
						|
			 Tg = VSUB(T7, Tf);
 | 
						|
			 Ty = VADD(T7, Tf);
 | 
						|
			 To = VADD(Ti, Tn);
 | 
						|
			 Tw = VADD(Tq, Tv);
 | 
						|
			 Tx = VBYI(VSUB(To, Tw));
 | 
						|
			 Tz = VADD(To, Tw);
 | 
						|
		    }
 | 
						|
		    ST(&(x[WS(rs, 9)]), VSUB(Tg, Tx), ms, &(x[WS(rs, 1)]));
 | 
						|
		    ST(&(x[0]), VADD(Ty, Tz), ms, &(x[0]));
 | 
						|
		    ST(&(x[WS(rs, 3)]), VADD(Tg, Tx), ms, &(x[WS(rs, 1)]));
 | 
						|
		    ST(&(x[WS(rs, 6)]), VSUB(Ty, Tz), ms, &(x[0]));
 | 
						|
	       }
 | 
						|
	       {
 | 
						|
		    V TS, TW, TV, TX;
 | 
						|
		    {
 | 
						|
			 V TQ, TR, TT, TU;
 | 
						|
			 TQ = VADD(TA, TB);
 | 
						|
			 TR = VADD(TK, TL);
 | 
						|
			 TS = VSUB(TQ, TR);
 | 
						|
			 TW = VADD(TQ, TR);
 | 
						|
			 TT = VADD(TD, TE);
 | 
						|
			 TU = VADD(TH, TI);
 | 
						|
			 TV = VBYI(VMUL(LDK(KP866025403), VSUB(TT, TU)));
 | 
						|
			 TX = VBYI(VMUL(LDK(KP866025403), VADD(TU, TT)));
 | 
						|
		    }
 | 
						|
		    ST(&(x[WS(rs, 10)]), VSUB(TS, TV), ms, &(x[0]));
 | 
						|
		    ST(&(x[WS(rs, 4)]), VADD(TW, TX), ms, &(x[0]));
 | 
						|
		    ST(&(x[WS(rs, 2)]), VADD(TS, TV), ms, &(x[0]));
 | 
						|
		    ST(&(x[WS(rs, 8)]), VSUB(TW, TX), ms, &(x[0]));
 | 
						|
	       }
 | 
						|
	       {
 | 
						|
		    V TG, TP, TN, TO;
 | 
						|
		    {
 | 
						|
			 V TC, TF, TJ, TM;
 | 
						|
			 TC = VSUB(TA, TB);
 | 
						|
			 TF = VMUL(LDK(KP866025403), VSUB(TD, TE));
 | 
						|
			 TG = VSUB(TC, TF);
 | 
						|
			 TP = VADD(TC, TF);
 | 
						|
			 TJ = VMUL(LDK(KP866025403), VSUB(TH, TI));
 | 
						|
			 TM = VSUB(TK, TL);
 | 
						|
			 TN = VBYI(VADD(TJ, TM));
 | 
						|
			 TO = VBYI(VSUB(TJ, TM));
 | 
						|
		    }
 | 
						|
		    ST(&(x[WS(rs, 5)]), VSUB(TG, TN), ms, &(x[WS(rs, 1)]));
 | 
						|
		    ST(&(x[WS(rs, 11)]), VSUB(TP, TO), ms, &(x[WS(rs, 1)]));
 | 
						|
		    ST(&(x[WS(rs, 7)]), VADD(TN, TG), ms, &(x[WS(rs, 1)]));
 | 
						|
		    ST(&(x[WS(rs, 1)]), VADD(TO, TP), ms, &(x[WS(rs, 1)]));
 | 
						|
	       }
 | 
						|
	  }
 | 
						|
     }
 | 
						|
     VLEAVE();
 | 
						|
}
 | 
						|
 | 
						|
static const tw_instr twinstr[] = {
 | 
						|
     VTW(0, 1),
 | 
						|
     VTW(0, 2),
 | 
						|
     VTW(0, 3),
 | 
						|
     VTW(0, 4),
 | 
						|
     VTW(0, 5),
 | 
						|
     VTW(0, 6),
 | 
						|
     VTW(0, 7),
 | 
						|
     VTW(0, 8),
 | 
						|
     VTW(0, 9),
 | 
						|
     VTW(0, 10),
 | 
						|
     VTW(0, 11),
 | 
						|
     { TW_NEXT, VL, 0 }
 | 
						|
};
 | 
						|
 | 
						|
static const ct_desc desc = { 12, XSIMD_STRING("t1fv_12"), twinstr, &GENUS, { 55, 26, 4, 0 }, 0, 0, 0 };
 | 
						|
 | 
						|
void XSIMD(codelet_t1fv_12) (planner *p) {
 | 
						|
     X(kdft_dit_register) (p, t1fv_12, &desc);
 | 
						|
}
 | 
						|
#endif
 |