184 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			184 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
 | |
| <html>
 | |
| <!-- This manual is for FFTW
 | |
| (version 3.3.10, 10 December 2020).
 | |
| 
 | |
| Copyright (C) 2003 Matteo Frigo.
 | |
| 
 | |
| Copyright (C) 2003 Massachusetts Institute of Technology.
 | |
| 
 | |
| Permission is granted to make and distribute verbatim copies of this
 | |
| manual provided the copyright notice and this permission notice are
 | |
| preserved on all copies.
 | |
| 
 | |
| Permission is granted to copy and distribute modified versions of this
 | |
| manual under the conditions for verbatim copying, provided that the
 | |
| entire resulting derived work is distributed under the terms of a
 | |
| permission notice identical to this one.
 | |
| 
 | |
| Permission is granted to copy and distribute translations of this manual
 | |
| into another language, under the above conditions for modified versions,
 | |
| except that this permission notice may be stated in a translation
 | |
| approved by the Free Software Foundation. -->
 | |
| <!-- Created by GNU Texinfo 6.7, http://www.gnu.org/software/texinfo/ -->
 | |
| <head>
 | |
| <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 | |
| <title>2d MPI example (FFTW 3.3.10)</title>
 | |
| 
 | |
| <meta name="description" content="2d MPI example (FFTW 3.3.10)">
 | |
| <meta name="keywords" content="2d MPI example (FFTW 3.3.10)">
 | |
| <meta name="resource-type" content="document">
 | |
| <meta name="distribution" content="global">
 | |
| <meta name="Generator" content="makeinfo">
 | |
| <link href="index.html" rel="start" title="Top">
 | |
| <link href="Concept-Index.html" rel="index" title="Concept Index">
 | |
| <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
 | |
| <link href="Distributed_002dmemory-FFTW-with-MPI.html" rel="up" title="Distributed-memory FFTW with MPI">
 | |
| <link href="MPI-Data-Distribution.html" rel="next" title="MPI Data Distribution">
 | |
| <link href="Linking-and-Initializing-MPI-FFTW.html" rel="prev" title="Linking and Initializing MPI FFTW">
 | |
| <style type="text/css">
 | |
| <!--
 | |
| a.summary-letter {text-decoration: none}
 | |
| blockquote.indentedblock {margin-right: 0em}
 | |
| div.display {margin-left: 3.2em}
 | |
| div.example {margin-left: 3.2em}
 | |
| div.lisp {margin-left: 3.2em}
 | |
| kbd {font-style: oblique}
 | |
| pre.display {font-family: inherit}
 | |
| pre.format {font-family: inherit}
 | |
| pre.menu-comment {font-family: serif}
 | |
| pre.menu-preformatted {font-family: serif}
 | |
| span.nolinebreak {white-space: nowrap}
 | |
| span.roman {font-family: initial; font-weight: normal}
 | |
| span.sansserif {font-family: sans-serif; font-weight: normal}
 | |
| ul.no-bullet {list-style: none}
 | |
| -->
 | |
| </style>
 | |
| 
 | |
| 
 | |
| </head>
 | |
| 
 | |
| <body lang="en">
 | |
| <span id="g_t2d-MPI-example"></span><div class="header">
 | |
| <p>
 | |
| Next: <a href="MPI-Data-Distribution.html" accesskey="n" rel="next">MPI Data Distribution</a>, Previous: <a href="Linking-and-Initializing-MPI-FFTW.html" accesskey="p" rel="prev">Linking and Initializing MPI FFTW</a>, Up: <a href="Distributed_002dmemory-FFTW-with-MPI.html" accesskey="u" rel="up">Distributed-memory FFTW with MPI</a>   [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
 | |
| </div>
 | |
| <hr>
 | |
| <span id="g_t2d-MPI-example-1"></span><h3 class="section">6.3 2d MPI example</h3>
 | |
| 
 | |
| <p>Before we document the FFTW MPI interface in detail, we begin with a
 | |
| simple example outlining how one would perform a two-dimensional
 | |
| <code>N0</code> by <code>N1</code> complex DFT. 
 | |
| </p>
 | |
| <div class="example">
 | |
| <pre class="example">#include <fftw3-mpi.h>
 | |
| 
 | |
| int main(int argc, char **argv)
 | |
| {
 | |
|     const ptrdiff_t N0 = ..., N1 = ...;
 | |
|     fftw_plan plan;
 | |
|     fftw_complex *data;
 | |
|     ptrdiff_t alloc_local, local_n0, local_0_start, i, j;
 | |
| 
 | |
|     MPI_Init(&argc, &argv);
 | |
|     fftw_mpi_init();
 | |
| 
 | |
|     /* <span class="roman">get local data size and allocate</span> */
 | |
|     alloc_local = fftw_mpi_local_size_2d(N0, N1, MPI_COMM_WORLD,
 | |
|                                          &local_n0, &local_0_start);
 | |
|     data = fftw_alloc_complex(alloc_local);
 | |
| 
 | |
|     /* <span class="roman">create plan for in-place forward DFT</span> */
 | |
|     plan = fftw_mpi_plan_dft_2d(N0, N1, data, data, MPI_COMM_WORLD,
 | |
|                                 FFTW_FORWARD, FFTW_ESTIMATE);    
 | |
| 
 | |
|     /* <span class="roman">initialize data to some function</span> my_function(x,y) */
 | |
|     for (i = 0; i < local_n0; ++i) for (j = 0; j < N1; ++j)
 | |
|        data[i*N1 + j] = my_function(local_0_start + i, j);
 | |
| 
 | |
|     /* <span class="roman">compute transforms, in-place, as many times as desired</span> */
 | |
|     fftw_execute(plan);
 | |
| 
 | |
|     fftw_destroy_plan(plan);
 | |
| 
 | |
|     MPI_Finalize();
 | |
| }
 | |
| </pre></div>
 | |
| 
 | |
| <p>As can be seen above, the MPI interface follows the same basic style
 | |
| of allocate/plan/execute/destroy as the serial FFTW routines.  All of
 | |
| the MPI-specific routines are prefixed with ‘<samp>fftw_mpi_</samp>’ instead
 | |
| of ‘<samp>fftw_</samp>’.  There are a few important differences, however:
 | |
| </p>
 | |
| <p>First, we must call <code>fftw_mpi_init()</code> after calling
 | |
| <code>MPI_Init</code> (required in all MPI programs) and before calling any
 | |
| other ‘<samp>fftw_mpi_</samp>’ routine.
 | |
| <span id="index-MPI_005fInit"></span>
 | |
| <span id="index-fftw_005fmpi_005finit-1"></span>
 | |
| </p>
 | |
| 
 | |
| <p>Second, when we create the plan with <code>fftw_mpi_plan_dft_2d</code>,
 | |
| analogous to <code>fftw_plan_dft_2d</code>, we pass an additional argument:
 | |
| the communicator, indicating which processes will participate in the
 | |
| transform (here <code>MPI_COMM_WORLD</code>, indicating all processes).
 | |
| Whenever you create, execute, or destroy a plan for an MPI transform,
 | |
| you must call the corresponding FFTW routine on <em>all</em> processes
 | |
| in the communicator for that transform.  (That is, these are
 | |
| <em>collective</em> calls.)  Note that the plan for the MPI transform
 | |
| uses the standard <code>fftw_execute</code> and <code>fftw_destroy</code> routines
 | |
| (on the other hand, there are MPI-specific new-array execute functions
 | |
| documented below).
 | |
| <span id="index-collective-function"></span>
 | |
| <span id="index-fftw_005fmpi_005fplan_005fdft_005f2d"></span>
 | |
| <span id="index-MPI_005fCOMM_005fWORLD-1"></span>
 | |
| </p>
 | |
| 
 | |
| <p>Third, all of the FFTW MPI routines take <code>ptrdiff_t</code> arguments
 | |
| instead of <code>int</code> as for the serial FFTW.  <code>ptrdiff_t</code> is a
 | |
| standard C integer type which is (at least) 32 bits wide on a 32-bit
 | |
| machine and 64 bits wide on a 64-bit machine.  This is to make it easy
 | |
| to specify very large parallel transforms on a 64-bit machine.  (You
 | |
| can specify 64-bit transform sizes in the serial FFTW, too, but only
 | |
| by using the ‘<samp>guru64</samp>’ planner interface.  See <a href="64_002dbit-Guru-Interface.html">64-bit Guru Interface</a>.)
 | |
| <span id="index-ptrdiff_005ft-1"></span>
 | |
| <span id="index-64_002dbit-architecture-1"></span>
 | |
| </p>
 | |
| 
 | |
| <p>Fourth, and most importantly, you don’t allocate the entire
 | |
| two-dimensional array on each process.  Instead, you call
 | |
| <code>fftw_mpi_local_size_2d</code> to find out what <em>portion</em> of the
 | |
| array resides on each processor, and how much space to allocate.
 | |
| Here, the portion of the array on each process is a <code>local_n0</code> by
 | |
| <code>N1</code> slice of the total array, starting at index
 | |
| <code>local_0_start</code>.  The total number of <code>fftw_complex</code> numbers
 | |
| to allocate is given by the <code>alloc_local</code> return value, which
 | |
| <em>may</em> be greater than <code>local_n0 * N1</code> (in case some
 | |
| intermediate calculations require additional storage).  The data
 | |
| distribution in FFTW’s MPI interface is described in more detail by
 | |
| the next section.
 | |
| <span id="index-fftw_005fmpi_005flocal_005fsize_005f2d"></span>
 | |
| <span id="index-data-distribution-1"></span>
 | |
| </p>
 | |
| 
 | |
| <p>Given the portion of the array that resides on the local process, it
 | |
| is straightforward to initialize the data (here to a function
 | |
| <code>myfunction</code>) and otherwise manipulate it.  Of course, at the end
 | |
| of the program you may want to output the data somehow, but
 | |
| synchronizing this output is up to you and is beyond the scope of this
 | |
| manual.  (One good way to output a large multi-dimensional distributed
 | |
| array in MPI to a portable binary file is to use the free HDF5
 | |
| library; see the <a href="http://www.hdfgroup.org/">HDF home page</a>.)
 | |
| <span id="index-HDF5"></span>
 | |
| <span id="index-MPI-I_002fO"></span>
 | |
| </p>
 | |
| <hr>
 | |
| <div class="header">
 | |
| <p>
 | |
| Next: <a href="MPI-Data-Distribution.html" accesskey="n" rel="next">MPI Data Distribution</a>, Previous: <a href="Linking-and-Initializing-MPI-FFTW.html" accesskey="p" rel="prev">Linking and Initializing MPI FFTW</a>, Up: <a href="Distributed_002dmemory-FFTW-with-MPI.html" accesskey="u" rel="up">Distributed-memory FFTW with MPI</a>   [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
 | |
| </div>
 | |
| 
 | |
| 
 | |
| 
 | |
| </body>
 | |
| </html>
 | 
