170 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			170 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003, 2007-14 Matteo Frigo
 | |
|  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "dft/dft.h"
 | |
| 
 | |
| typedef struct {
 | |
|      solver super;
 | |
| } S;
 | |
| 
 | |
| typedef struct {
 | |
|      plan_dft super;
 | |
|      twid *td;
 | |
|      INT n, is, os;
 | |
| } P;
 | |
| 
 | |
| 
 | |
| static void cdot(INT n, const E *x, const R *w, 
 | |
| 		 R *or0, R *oi0, R *or1, R *oi1)
 | |
| {
 | |
|      INT i;
 | |
| 
 | |
|      E rr = x[0], ri = 0, ir = x[1], ii = 0; 
 | |
|      x += 2;
 | |
|      for (i = 1; i + i < n; ++i) {
 | |
| 	  rr += x[0] * w[0];
 | |
| 	  ir += x[1] * w[0];
 | |
| 	  ri += x[2] * w[1];
 | |
| 	  ii += x[3] * w[1];
 | |
| 	  x += 4; w += 2;
 | |
|      }
 | |
|      *or0 = rr + ii;
 | |
|      *oi0 = ir - ri;
 | |
|      *or1 = rr - ii;
 | |
|      *oi1 = ir + ri;
 | |
| }
 | |
| 
 | |
| static void hartley(INT n, const R *xr, const R *xi, INT xs, E *o,
 | |
| 		    R *pr, R *pi)
 | |
| {
 | |
|      INT i;
 | |
|      E sr, si;
 | |
|      o[0] = sr = xr[0]; o[1] = si = xi[0]; o += 2;
 | |
|      for (i = 1; i + i < n; ++i) {
 | |
| 	  sr += (o[0] = xr[i * xs] + xr[(n - i) * xs]);
 | |
| 	  si += (o[1] = xi[i * xs] + xi[(n - i) * xs]);
 | |
| 	  o[2] = xr[i * xs] - xr[(n - i) * xs];
 | |
| 	  o[3] = xi[i * xs] - xi[(n - i) * xs];
 | |
| 	  o += 4;
 | |
|      }
 | |
|      *pr = sr;
 | |
|      *pi = si;
 | |
| }
 | |
| 		    
 | |
| static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
|      INT i;
 | |
|      INT n = ego->n, is = ego->is, os = ego->os;
 | |
|      const R *W = ego->td->W;
 | |
|      E *buf;
 | |
|      size_t bufsz = n * 2 * sizeof(E);
 | |
| 
 | |
|      BUF_ALLOC(E *, buf, bufsz);
 | |
|      hartley(n, ri, ii, is, buf, ro, io);
 | |
| 
 | |
|      for (i = 1; i + i < n; ++i) {
 | |
| 	  cdot(n, buf, W,
 | |
| 	       ro + i * os, io + i * os,
 | |
| 	       ro + (n - i) * os, io + (n - i) * os);
 | |
| 	  W += n - 1;
 | |
|      }
 | |
| 
 | |
|      BUF_FREE(buf, bufsz);
 | |
| }
 | |
| 
 | |
| static void awake(plan *ego_, enum wakefulness wakefulness)
 | |
| {
 | |
|      P *ego = (P *) ego_;
 | |
|      static const tw_instr half_tw[] = {
 | |
| 	  { TW_HALF, 1, 0 },
 | |
| 	  { TW_NEXT, 1, 0 }
 | |
|      };
 | |
| 
 | |
|      X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n,
 | |
| 		      (ego->n - 1) / 2);
 | |
| }
 | |
| 
 | |
| static void print(const plan *ego_, printer *p)
 | |
| {
 | |
|      const P *ego = (const P *) ego_;
 | |
| 
 | |
|      p->print(p, "(dft-generic-%D)", ego->n);
 | |
| }
 | |
| 
 | |
| static int applicable(const solver *ego, const problem *p_, 
 | |
| 		      const planner *plnr)
 | |
| {
 | |
|      const problem_dft *p = (const problem_dft *) p_;
 | |
|      UNUSED(ego);
 | |
| 
 | |
|      return (1
 | |
| 	     && p->sz->rnk == 1
 | |
| 	     && p->vecsz->rnk == 0
 | |
| 	     && (p->sz->dims[0].n % 2) == 1 
 | |
| 	     && CIMPLIES(NO_LARGE_GENERICP(plnr), p->sz->dims[0].n < GENERIC_MIN_BAD)
 | |
| 	     && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > GENERIC_MAX_SLOW)
 | |
| 	     && X(is_prime)(p->sz->dims[0].n)
 | |
| 	  );
 | |
| }
 | |
| 
 | |
| static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
 | |
| {
 | |
|      const problem_dft *p;
 | |
|      P *pln;
 | |
|      INT n;
 | |
| 
 | |
|      static const plan_adt padt = {
 | |
| 	  X(dft_solve), awake, print, X(plan_null_destroy)
 | |
|      };
 | |
| 
 | |
|      if (!applicable(ego, p_, plnr))
 | |
|           return (plan *)0;
 | |
| 
 | |
|      pln = MKPLAN_DFT(P, &padt, apply);
 | |
| 
 | |
|      p = (const problem_dft *) p_;
 | |
|      pln->n = n = p->sz->dims[0].n;
 | |
|      pln->is = p->sz->dims[0].is;
 | |
|      pln->os = p->sz->dims[0].os;
 | |
|      pln->td = 0;
 | |
| 
 | |
|      pln->super.super.ops.add = (n-1) * 5;
 | |
|      pln->super.super.ops.mul = 0;
 | |
|      pln->super.super.ops.fma = (n-1) * (n-1) ;
 | |
| #if 0 /* these are nice pipelined sequential loads and should cost nothing */
 | |
|      pln->super.super.ops.other = (n-1)*(4 + 1 + 2 * (n-1));  /* approximate */
 | |
| #endif
 | |
| 
 | |
|      return &(pln->super.super);
 | |
| }
 | |
| 
 | |
| static solver *mksolver(void)
 | |
| {
 | |
|      static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
 | |
|      S *slv = MKSOLVER(S, &sadt);
 | |
|      return &(slv->super);
 | |
| }
 | |
| 
 | |
| void X(dft_generic_register)(planner *p)
 | |
| {
 | |
|      REGISTER_SOLVER(p, mksolver());
 | |
| }
 | 
