149 lines
		
	
	
		
			6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			149 lines
		
	
	
		
			6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 | 
						|
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
/* This file was automatically generated --- DO NOT EDIT */
 | 
						|
/* Generated on Tue Sep 14 10:46:47 EDT 2021 */
 | 
						|
 | 
						|
#include "rdft/codelet-rdft.h"
 | 
						|
 | 
						|
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
 | 
						|
 | 
						|
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -name r2cb_7 -include rdft/scalar/r2cb.h */
 | 
						|
 | 
						|
/*
 | 
						|
 * This function contains 24 FP additions, 22 FP multiplications,
 | 
						|
 * (or, 2 additions, 0 multiplications, 22 fused multiply/add),
 | 
						|
 * 27 stack variables, 7 constants, and 14 memory accesses
 | 
						|
 */
 | 
						|
#include "rdft/scalar/r2cb.h"
 | 
						|
 | 
						|
static void r2cb_7(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
 | 
						|
{
 | 
						|
     DK(KP1_949855824, +1.949855824363647214036263365987862434465571601);
 | 
						|
     DK(KP801937735, +0.801937735804838252472204639014890102331838324);
 | 
						|
     DK(KP1_801937735, +1.801937735804838252472204639014890102331838324);
 | 
						|
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
 | 
						|
     DK(KP692021471, +0.692021471630095869627814897002069140197260599);
 | 
						|
     DK(KP356895867, +0.356895867892209443894399510021300583399127187);
 | 
						|
     DK(KP554958132, +0.554958132087371191422194871006410481067288862);
 | 
						|
     {
 | 
						|
	  INT i;
 | 
						|
	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(28, rs), MAKE_VOLATILE_STRIDE(28, csr), MAKE_VOLATILE_STRIDE(28, csi)) {
 | 
						|
	       E T1, T9, Tb, Ta, Tc, Tm, Th, T7, Tk, Tf, T5, Tl, Tn;
 | 
						|
	       T1 = Cr[0];
 | 
						|
	       T9 = Ci[WS(csi, 2)];
 | 
						|
	       Tb = Ci[WS(csi, 3)];
 | 
						|
	       Ta = Ci[WS(csi, 1)];
 | 
						|
	       Tc = FMA(KP554958132, Tb, Ta);
 | 
						|
	       Tm = FMS(KP554958132, Ta, T9);
 | 
						|
	       Th = FMA(KP554958132, T9, Tb);
 | 
						|
	       {
 | 
						|
		    E T2, T4, T3, T6, Tj, Te;
 | 
						|
		    T2 = Cr[WS(csr, 1)];
 | 
						|
		    T4 = Cr[WS(csr, 3)];
 | 
						|
		    T3 = Cr[WS(csr, 2)];
 | 
						|
		    T6 = FNMS(KP356895867, T3, T2);
 | 
						|
		    Tj = FNMS(KP356895867, T4, T3);
 | 
						|
		    Te = FNMS(KP356895867, T2, T4);
 | 
						|
		    T7 = FNMS(KP692021471, T6, T4);
 | 
						|
		    Tk = FNMS(KP692021471, Tj, T2);
 | 
						|
		    Tf = FNMS(KP692021471, Te, T3);
 | 
						|
		    T5 = T2 + T3 + T4;
 | 
						|
	       }
 | 
						|
	       R0[0] = FMA(KP2_000000000, T5, T1);
 | 
						|
	       Tl = FNMS(KP1_801937735, Tk, T1);
 | 
						|
	       Tn = FMA(KP801937735, Tm, Tb);
 | 
						|
	       R1[WS(rs, 1)] = FNMS(KP1_949855824, Tn, Tl);
 | 
						|
	       R0[WS(rs, 2)] = FMA(KP1_949855824, Tn, Tl);
 | 
						|
	       {
 | 
						|
		    E T8, Td, Tg, Ti;
 | 
						|
		    T8 = FNMS(KP1_801937735, T7, T1);
 | 
						|
		    Td = FMA(KP801937735, Tc, T9);
 | 
						|
		    R1[0] = FNMS(KP1_949855824, Td, T8);
 | 
						|
		    R0[WS(rs, 3)] = FMA(KP1_949855824, Td, T8);
 | 
						|
		    Tg = FNMS(KP1_801937735, Tf, T1);
 | 
						|
		    Ti = FNMS(KP801937735, Th, Ta);
 | 
						|
		    R0[WS(rs, 1)] = FNMS(KP1_949855824, Ti, Tg);
 | 
						|
		    R1[WS(rs, 2)] = FMA(KP1_949855824, Ti, Tg);
 | 
						|
	       }
 | 
						|
	  }
 | 
						|
     }
 | 
						|
}
 | 
						|
 | 
						|
static const kr2c_desc desc = { 7, "r2cb_7", { 2, 0, 22, 0 }, &GENUS };
 | 
						|
 | 
						|
void X(codelet_r2cb_7) (planner *p) { X(kr2c_register) (p, r2cb_7, &desc);
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -name r2cb_7 -include rdft/scalar/r2cb.h */
 | 
						|
 | 
						|
/*
 | 
						|
 * This function contains 24 FP additions, 19 FP multiplications,
 | 
						|
 * (or, 11 additions, 6 multiplications, 13 fused multiply/add),
 | 
						|
 * 21 stack variables, 7 constants, and 14 memory accesses
 | 
						|
 */
 | 
						|
#include "rdft/scalar/r2cb.h"
 | 
						|
 | 
						|
static void r2cb_7(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
 | 
						|
{
 | 
						|
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
 | 
						|
     DK(KP1_801937735, +1.801937735804838252472204639014890102331838324);
 | 
						|
     DK(KP445041867, +0.445041867912628808577805128993589518932711138);
 | 
						|
     DK(KP1_246979603, +1.246979603717467061050009768008479621264549462);
 | 
						|
     DK(KP867767478, +0.867767478235116240951536665696717509219981456);
 | 
						|
     DK(KP1_949855824, +1.949855824363647214036263365987862434465571601);
 | 
						|
     DK(KP1_563662964, +1.563662964936059617416889053348115500464669037);
 | 
						|
     {
 | 
						|
	  INT i;
 | 
						|
	  for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(28, rs), MAKE_VOLATILE_STRIDE(28, csr), MAKE_VOLATILE_STRIDE(28, csi)) {
 | 
						|
	       E T9, Td, Tb, T1, T4, T2, T3, T5, Tc, Ta, T6, T8, T7;
 | 
						|
	       T6 = Ci[WS(csi, 2)];
 | 
						|
	       T8 = Ci[WS(csi, 1)];
 | 
						|
	       T7 = Ci[WS(csi, 3)];
 | 
						|
	       T9 = FNMS(KP1_949855824, T7, KP1_563662964 * T6) - (KP867767478 * T8);
 | 
						|
	       Td = FMA(KP867767478, T6, KP1_563662964 * T7) - (KP1_949855824 * T8);
 | 
						|
	       Tb = FMA(KP1_563662964, T8, KP1_949855824 * T6) + (KP867767478 * T7);
 | 
						|
	       T1 = Cr[0];
 | 
						|
	       T4 = Cr[WS(csr, 3)];
 | 
						|
	       T2 = Cr[WS(csr, 1)];
 | 
						|
	       T3 = Cr[WS(csr, 2)];
 | 
						|
	       T5 = FMA(KP1_246979603, T3, T1) + FNMA(KP445041867, T4, KP1_801937735 * T2);
 | 
						|
	       Tc = FMA(KP1_246979603, T4, T1) + FNMA(KP1_801937735, T3, KP445041867 * T2);
 | 
						|
	       Ta = FMA(KP1_246979603, T2, T1) + FNMA(KP1_801937735, T4, KP445041867 * T3);
 | 
						|
	       R0[WS(rs, 2)] = T5 - T9;
 | 
						|
	       R1[WS(rs, 1)] = T5 + T9;
 | 
						|
	       R0[WS(rs, 1)] = Tc + Td;
 | 
						|
	       R1[WS(rs, 2)] = Tc - Td;
 | 
						|
	       R0[WS(rs, 3)] = Ta + Tb;
 | 
						|
	       R1[0] = Ta - Tb;
 | 
						|
	       R0[0] = FMA(KP2_000000000, T2 + T3 + T4, T1);
 | 
						|
	  }
 | 
						|
     }
 | 
						|
}
 | 
						|
 | 
						|
static const kr2c_desc desc = { 7, "r2cb_7", { 11, 6, 13, 0 }, &GENUS };
 | 
						|
 | 
						|
void X(codelet_r2cb_7) (planner *p) { X(kr2c_register) (p, r2cb_7, &desc);
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |