furnace/src/engine/platform/pet.cpp
tildearrow c009cb3536 dev112 - prepare for advanced arp macro
this new advanced arp macro offers more flexibility and reduces code duplication
it allows you to set each step of the macro to either relative or fixed mode
(instead of just one mode for the entire macro)

the UI is still a work in progress and doesn't work well

this change is big and may break things! further fixes incoming
2022-08-22 15:59:45 -05:00

317 lines
7.7 KiB
C++

/**
* Furnace Tracker - multi-system chiptune tracker
* Copyright (C) 2021-2022 tildearrow and contributors
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "pet.h"
#include "../engine.h"
#include <math.h>
#define CHIP_DIVIDER 16
#define SAMP_DIVIDER 4
const char* regCheatSheet6522[]={
"T2L", "08",
"T2H", "09",
"SR", "0A",
"ACR", "0B",
"PCR", "0C",
NULL
};
const char** DivPlatformPET::getRegisterSheet() {
return regCheatSheet6522;
}
// high-level emulation of 6522 shift register and driver software for now
void DivPlatformPET::rWrite(unsigned int addr, unsigned char val) {
bool hwSROutput=((regPool[11]>>2)&7)==4;
switch (addr) {
case 9:
// simulate phase reset from switching between hw/sw shift registers
if ((regPool[9]==0)^(val==0)) {
chan.sreg=chan.wave;
}
break;
case 10:
chan.sreg=val;
if (hwSROutput) chan.cnt=2;
break;
}
regPool[addr]=val;
}
void DivPlatformPET::acquire(short* bufL, short* bufR, size_t start, size_t len) {
bool hwSROutput=((regPool[11]>>2)&7)==4;
if (chan.enable) {
int reload=regPool[8]*2+4;
if (!hwSROutput) {
reload+=regPool[9]*512;
}
for (size_t h=start; h<start+len; h++) {
if (SAMP_DIVIDER>chan.cnt) {
chan.out=(chan.sreg&1)*32767;
chan.sreg=(chan.sreg>>1)|((chan.sreg&1)<<7);
chan.cnt+=reload-SAMP_DIVIDER;
} else {
chan.cnt-=SAMP_DIVIDER;
}
bufL[h]=chan.out;
bufR[h]=chan.out;
oscBuf->data[oscBuf->needle++]=chan.out;
}
// emulate driver writes to PCR
if (!hwSROutput) regPool[12]=chan.out?0xe0:0xc0;
} else {
chan.out=0;
for (size_t h=start; h<start+len; h++) {
bufL[h]=0;
bufR[h]=0;
oscBuf->data[oscBuf->needle++]=0;
}
}
}
void DivPlatformPET::writeOutVol() {
if (chan.active && !isMuted && chan.outVol>0) {
chan.enable=true;
rWrite(11,regPool[9]==0?16:0);
} else {
chan.enable=false;
rWrite(11,0);
}
}
void DivPlatformPET::tick(bool sysTick) {
chan.std.next();
if (chan.std.vol.had) {
chan.outVol=chan.std.vol.val&chan.vol;
writeOutVol();
}
if (chan.std.arp.had) {
if (!chan.inPorta) {
chan.baseFreq=NOTE_PERIODIC(parent->calcArp(chan.note,chan.std.arp.val));
}
chan.freqChanged=true;
}
if (chan.std.wave.had) {
if (chan.wave!=chan.std.wave.val) {
chan.wave=chan.std.wave.val;
rWrite(10,chan.wave);
}
}
if (chan.std.pitch.had) {
if (chan.std.pitch.mode) {
chan.pitch2+=chan.std.pitch.val;
CLAMP_VAR(chan.pitch2,-32768,32767);
} else {
chan.pitch2=chan.std.pitch.val;
}
chan.freqChanged=true;
}
if (chan.freqChanged || chan.keyOn || chan.keyOff) {
chan.freq=parent->calcFreq(chan.baseFreq,chan.pitch,true,0,chan.pitch2,chipClock,CHIP_DIVIDER)-2;
if (chan.freq>65535) chan.freq=65535;
if (chan.freq<0) chan.freq=0;
rWrite(8,chan.freq&0xff);
rWrite(9,chan.freq>>8);
if (chan.keyOn) {
if (!chan.std.vol.will) {
chan.outVol=chan.vol;
}
chan.keyOn=false;
}
if (chan.keyOff) {
chan.keyOff=false;
}
// update mode setting and channel enable
writeOutVol();
chan.freqChanged=false;
}
}
int DivPlatformPET::dispatch(DivCommand c) {
switch (c.cmd) {
case DIV_CMD_NOTE_ON: {
DivInstrument* ins=parent->getIns(chan.ins,DIV_INS_PET);
if (c.value!=DIV_NOTE_NULL) {
chan.baseFreq=NOTE_PERIODIC(c.value);
chan.freqChanged=true;
chan.note=c.value;
}
chan.active=true;
chan.keyOn=true;
chan.macroInit(ins);
if (!parent->song.brokenOutVol && !chan.std.vol.will) {
chan.outVol=chan.vol;
}
break;
}
case DIV_CMD_NOTE_OFF:
chan.active=false;
chan.keyOff=true;
chan.macroInit(NULL);
break;
case DIV_CMD_NOTE_OFF_ENV:
case DIV_CMD_ENV_RELEASE:
chan.std.release();
break;
case DIV_CMD_INSTRUMENT:
if (chan.ins!=c.value || c.value2==1) {
chan.ins=c.value;
}
break;
case DIV_CMD_VOLUME:
if (chan.vol!=c.value) {
chan.vol=c.value;
if (!chan.std.vol.had) {
chan.outVol=chan.vol;
writeOutVol();
}
}
break;
case DIV_CMD_GET_VOLUME:
return chan.vol;
break;
case DIV_CMD_PITCH:
chan.pitch=c.value;
chan.freqChanged=true;
break;
case DIV_CMD_WAVE:
chan.wave=c.value;
rWrite(10,chan.wave);
break;
case DIV_CMD_NOTE_PORTA: {
int destFreq=NOTE_PERIODIC(c.value2);
bool return2=false;
if (destFreq>chan.baseFreq) {
chan.baseFreq+=c.value;
if (chan.baseFreq>=destFreq) {
chan.baseFreq=destFreq;
return2=true;
}
} else {
chan.baseFreq-=c.value;
if (chan.baseFreq<=destFreq) {
chan.baseFreq=destFreq;
return2=true;
}
}
chan.freqChanged=true;
if (return2) {
chan.inPorta=false;
return 2;
}
break;
}
case DIV_CMD_LEGATO:
chan.baseFreq=NOTE_PERIODIC(c.value+((chan.std.arp.will && !chan.std.arp.mode)?(chan.std.arp.val):(0)));
chan.freqChanged=true;
chan.note=c.value;
break;
case DIV_CMD_PRE_PORTA:
if (chan.active && c.value2) {
if (parent->song.resetMacroOnPorta) chan.macroInit(parent->getIns(chan.ins,DIV_INS_PET));
}
if (!chan.inPorta && c.value && !parent->song.brokenPortaArp && chan.std.arp.will) chan.baseFreq=NOTE_PERIODIC(chan.note);
chan.inPorta=c.value;
break;
case DIV_CMD_GET_VOLMAX:
return 1;
break;
case DIV_ALWAYS_SET_VOLUME:
return 1;
break;
default:
break;
}
return 1;
}
void DivPlatformPET::muteChannel(int ch, bool mute) {
isMuted=mute;
writeOutVol();
}
void DivPlatformPET::forceIns() {
chan.insChanged=true;
chan.freqChanged=true;
writeOutVol();
}
void* DivPlatformPET::getChanState(int ch) {
return &chan;
}
DivMacroInt* DivPlatformPET::getChanMacroInt(int ch) {
return &chan.std;
}
DivDispatchOscBuffer* DivPlatformPET::getOscBuffer(int ch) {
return oscBuf;
}
unsigned char* DivPlatformPET::getRegisterPool() {
return regPool;
}
int DivPlatformPET::getRegisterPoolSize() {
return 16;
}
void DivPlatformPET::reset() {
memset(regPool,0,16);
chan=Channel();
chan.std.setEngine(parent);
}
bool DivPlatformPET::isStereo() {
return false;
}
void DivPlatformPET::notifyInsDeletion(void* ins) {
chan.std.notifyInsDeletion((DivInstrument*)ins);
}
void DivPlatformPET::poke(unsigned int addr, unsigned short val) {
rWrite(addr,val);
}
void DivPlatformPET::poke(std::vector<DivRegWrite>& wlist) {
for (DivRegWrite& i: wlist) rWrite(i.addr,i.val);
}
int DivPlatformPET::init(DivEngine* p, int channels, int sugRate, unsigned int flags) {
parent=p;
dumpWrites=false;
skipRegisterWrites=false;
chipClock=1000000;
rate=chipClock/SAMP_DIVIDER; // = 250000kHz
isMuted=false;
oscBuf=new DivDispatchOscBuffer;
oscBuf->rate=rate;
reset();
return 1;
}
void DivPlatformPET::quit() {
delete oscBuf;
}
DivPlatformPET::~DivPlatformPET() {
}